какие требования предъявляют к конструкционным сталям
Конструкционные стали. Требования. Виды
Требования к конструкционным сталям
1. Высокая конструктивная прочность, обеспечивающая длительную и надежную работу конструкции в условиях эксплуатации.
2. Наличие комплекса высоких механических свойств, а не одной какой-либо характеристики.
3. Высокая сопротивляемость ударным нагрузкам, усталости, а при трении —сопротивляемость износу, а также коррозии
4. Хорошие технологические свойства — высокие литейные свойства, обрабатываемость давлением, резанием, хорошую свариваемость.
5. Дешевизна и отсутствие дефицитных легирующих элементов.
Механические свойства стали зависят от ее структуры и состава. Совместное воздействие термической обработки и легирования является эффективным способом повышения механических характеристик стали.
Виды конструкционных сталей
1) углеродистые, в том числе автоматные стали;
Автоматные стали
Пприменяют для массового изготовления крепежа на станках-автоматах. Основное требование к ним — хорошая обрабатываемость резанием, достигаемая за счет увеличения содержания серы и фосфора до 0,1—0,2 %, а также добавления селена и свинца. Маркируются автоматные стали буквой А и двумя цифрами, показывающими среднее содержание углерода в сотых долях процента: А12, А20, А30.
Строительные
Строительная сталь предназначается для изготовления строительных конструкций — мостов, газо- и нефтепроводов, ферм, котлов и т. д. Все строительные конструкции, как правило, являются сварными, и свариваемость — одно из основных свойств строительной стали.
Арматурная сталь
Используется для армирования обычного и предварительного напряженного железобетона, железобетонных конструкций.
Цементуемые стали
Предназначены для деталей, находящихся под действием динамических нагрузок в условиях поверхностного износа, испытывающих значительные ударные нагрузки, имеющих большее сечение или сложную конфигурацию или подвергающихся действию больших знакопеременных напряжений.. Такие стали применяют также для крупных тяжело нагруженных деталей типа зубчатых колес, осей и др. Эти детали устойчивы к динамическим нагрузкам.
Улучшаемые стали
Улучшаемыми конструкционными сталями называют среднеуглеродистые стали, содержащие 0,3—0,5 % углерода и легирующие элементы обычно в количестве не более 5 %, которые используют после операции так называемого «улучшения», состоящей из закалки и высокого отпуска. Закалку таких сталей обычно проводят в масле. Температура отпуска составляет 550—650 °С.
Высокопрочные стали
Высокопрочными называют стали с временным сопротивлением более 1500 МПа. Это прочные и одновременно вязкие стали, содержащие два, три и более специальных элементов. Предназначены для сильно нагруженных деталей машин.
Рессорно-пружинные стали
Имеют высокий предел текучести (упругости), характеризуются высоким содержанием углерода в пределах 0,5-0,7%С, часто с добавками марганца и кремния, хрома и ванадия.
Шарикоподшипниковые стали
Это высокоуглеродистые или низкоуглеродистые в цементованном состоянии стали, обладающие высокой твердостью. Легируются обычно хромом.
Износостойкие стали
Устойчивость к износу этих сталей достигается получением высокой поверхностной твердости за счет графитизации, наклепа и применения наплавочных материалов.
Требования, предъявляемые к конструкционным сталям
К конструкционным сталям, применяемым для изготовления разнообразных деталей машин, предъявляют следующие требования:
– сочетание высокой прочности и достаточной вязкости;
– хорошие технологические свойства;
Классификация и маркировка легированных сталей. ГОСТы на легированные стали
Стали классифицируются по нескольким признакам.
1. По структуре после охлаждения на воздухе выделяются три основных класса сталей:
Стали перлитного класса характеризуются малым содержанием легирующих элементов; мартенситного – более значительным содержанием; аустенитного – высоким содержанием легирующих элементов.
Классификация связана с кинетикой распада аустенита. Диаграммы изотермического распада аустенита для сталей различных классов представлены на рис. 12.3
Рис.12.3. Диаграммы изотермического распада аустенита для сталей перлитного (а), мартенситного (б) и аустенитного (в) классов
По мере увеличения содержания легирующих элементов устойчивость аустенита в перлитной области возрастает, а температурная область мартенситного превращения снижается.
Для сталей перлитного класса кривая скорости охлаждения на воздухе пересекает область перлитного распада (рис. 12.3.а), поэтому образуются структуры перлита, сорбита или троостита.
Для сталей мартенситного класса область перлитного распада сдвинута вправо (рис.12.3 б). Охлаждение на воздухе не приводит к превращению в перлитной области. Аустенит переохлаждается до температуры мартенситного превращения и происходит образование мартенсита.
Для сталей аустенитного класса увеличение содержания углерода и легирующих элементов сдвигает вправо область перлитного распада, а также снижает мартенситную точку, переводя ее в область отрицательных температур (рис. 12.3.в). Сталь охлаждается на воздухе до комнатной температуры, сохраняя аустенитное состояние.
2. По степени легирования (по содержанию легирующих элементов):
· среднелегированные – до 10 %;
· высоколегированные – более 10%.
3. По числу легирующих элементов:
· трехкомпонентные (железо, углерод, легирующий элемент);
· четырехкомпонентные (железо, углерод, два легирующих элемента) и так далее.
никелевые, хромистые, хромоникелевые, хромоникельмолибденовые и так далее (признак – наличие тех или иных легирующих элементов).
· инструментальные (режущие, мерительные, штамповые);
· стали и сплавы с особыми свойствами (резко выраженные свойства –нержавеющие, жаропрочные и термоустойчивые, износоустойчивые, с особыми магнитными и электрическими свойствами).
Классификация конструкционных сталей
Машиностроительные стали предназначены для изготовления различных деталей машин и механизмов.
· по химическому составу (углеродистые и легированные);
· по обработке (цементуемые, улучшаемые);
· по назначению (пружинные, шарикоподшипниковые).
Низкоуглеродистые стали 05 кп, 08, 10, 10 пс обладают малой прочностью высокой пластичностью. Применяются без термической обработки для изготовления малонагруженных деталей – шайб, прокладок и т.п.
Среднеуглеродистые стали 35, 40, 45 применяются после нормализации, термического улучшения, поверхностной закалки.
В нормализованном состоянии по сравнению с низкоотпущенным обладают большей прочностью, но меньшей пластичностью. После термического улучшения наблюдается наилучшее сочетание механических свойств. После поверхностной закалки обладают высокой поверхностной твердостью и сопротивлением износу.
Высокоуглеродистые стали 60, 65, 70,75 используются как рессорно-пружинные после среднего отпуска. В нормализованном состоянии – для прокатных валков, шпинделей станков.
Достоинства углеродистых качественных сталей – дешевизна и технологичность. Но из-за малой прокаливаемости эти стали не обеспечивают требуемый комплекс механических свойств в деталях сечением более 20 мм.
6.2 Требования к выбору стали
6.2.1 Общие требования
6.2.1.1 Стали, используемые для изготовления конструкций резервуаров, должны соответствовать требованиям действующих стандартов и ТУ, дополнительным требованиям настоящего стандарта, а также требованиям проектной документации.
6.2.1.2 Элементы конструкций по требованиям к материалам подразделяют на следующие группы:
А и Б — основные конструкции:
А — стенка, привариваемые к стенке листы днища или окрайки днища, обечайки люков и патрубков в стенке и фланцы к ним. усиливающие накладки, опорные кольца стационарных крыш, кольца жесткости, подкладные пластины на стенке для крепления конструктивных элементов;
Б1 — каркас крыш, бескаркасные крыши;
Б2 — центральная часть днища, плавающие крыши и понтоны, анкерные крепления, настил каркасных крыш, обечайки патрубков и люков на крыше, крышки люков;
В — вспомогательные конструкции: лестницы, площадки, переходы, ограждения.
6.2.1.3 Для основных конструкций группы А следует применять только спокойную (полностью раскисленную) сталь.
Для основных конструкций группы Б следует применять спокойную или полуспокойную сталь.
Для вспомогательных конструкций группы В наряду с вышеперечисленными сталями с учетом температурных условий эксплуатации допускается применение кипящей стали.
6.2.1.4 Выбор марок стали для основных элементов конструкций следует проводить с учетом гарантированного минимального предела текучести, толщины проката и хладостойкости (ударной вязкости). Толщина листового проката не должна превышать 40 мм. Рекомендуемые марки стали приведены в приложении А.
6.2.1.5 Углеродный эквивалент стали с пределом текучести σт, 440 МПа):
0,9 — для стали контролируемой прокатки (σт > 440 МПа).
6.2.1.7 Требования к стали для вспомогательных конструкций должны соответствовать строительным нормам и правилам для строительных стальных конструкций с учетом условий эксплуатации, действующих нагрузок и климатических воздействий.
6.2.1.8 Материалы для сварки (электроды, сварочная проволока, флюсы, защитные газы) следует выбирать в соответствии с требованиями технологического процесса изготовления и монтажа конструкций и выбранных марок стали. При этом применяемые сварочные материалы и технология сварки должны обеспечивать механические свойства металла сварных соединений не ниже свойств, установленных требованиями для выбранных марок стали.
Для сварных соединений из стали с гарантированным минимальным пределом текучести 305-440 МПа твердость HV металла шва и околошовной зоны не должна превышать 280 ед.
6.2.2 Расчетная температура металла
6.2.2.1 За расчетную температуру металла необходимо принимать наиболее низкое из двух следующих значений:
— минимальная температура хранимого продукта;
— температура наиболее холодных суток для данной местности (минимальная среднесуточная температура), повышенная на 5°C.
Примечание — При определении расчетной температуры металла не принимают во внимание температурные эффекты специального обогрева и теплоизолирования резервуара.
6.2.2.2 Температуру наиболее холодных суток для данной местности определяют с обеспеченностью 0,96 для температур наружного воздуха по действующим нормативным документам*.
6.2.2.3 Для резервуаров рулонной сборки расчетную температуру металла следует принимать по 6.2.2.1. снижая ее на 5 ®С при толщинах листов стенки от 10 до 14 мм включительно, а при толщинах свыше 14 мм — на 10°C.
6.2.3 Требования к ударной вязкости
6.2.3.1 Требования к ударной вязкости стали для элементов основных конструкций групп А и Б назначают в зависимости от группы конструкций, расчетной температуры металла, механических свойств стали и толщины проката.
6.2.3.2 Для элементов конструкций группы А из стали с гарантированным минимальным пределом текучести 390 МПа и менее температуру испытаний необходимо определять по номограмме (см. рисунок 23) с учетом предела текучести стали, толщины металлопроката и расчетной температуры металла. При использовании стали с пределом текучести более 390 МПа температуру испытаний следует принимать равной расчетной температуре металла.
Для элементов конструкций групп Б1 и Б2 температура испытаний определяют по номограмме (см. рисунок 23) с повышением данной температуры на 10°С.
6.2.3.3 Для элементов конструкций групп А и Б1, обязательным является определение значения ударной вязкости KCV, а для элементов группы Б2 — KCU при заданной температуре испытаний (см. 6.2.3.2).
6.2.3.5 Дополнительные требования по углеродному эквиваленту (см. 6.2.1.5), механическим свойствам (см. 6.2.1.6), твердости металла сварного соединения (см. 6.2.1.8) и ударной вязкости (см. 6.2.3.3) должны быть указаны в проектной документации (спецификации на металлопрокат).
1.1.3.6 Температура испытаний по графику на рисунке 23 может быть заменена аппроксимирующей формулой 19:
* На территории Российской Федерации действует СП 131.13330.2012 «СНиП 23-01-99* Строительная климатология», таблица 3.1.
Какие требования предъявляют к конструкционным сталям
МЕТАЛЛОПРОДУКЦИЯ ИЗ НЕЛЕГИРОВАННЫХ КОНСТРУКЦИОННЫХ КАЧЕСТВЕННЫХ И СПЕЦИАЛЬНЫХ СТАЛЕЙ
Общие технические условия
Metal products from nonalloyed structural quality and special steels. General specification
____________________________________________________________________
Текст Сравнения ГОСТ 1050-2013 с ГОСТ 1050-88 см. по ссылке.
— Примечание изготовителя базы данных.
____________________________________________________________________
Дата введения 2015-01-01
Предисловие
Цели, основные принципы и основной порядок проведения работ по межгосударственной стандартизации установлены в ГОСТ 1.0-92 «Межгосударственная система стандартизации. Основные положения» и ГОСТ 1.2-2009 «Межгосударственная система стандартизации. Стандарты межгосударственные, правила и рекомендации по межгосударственной стандартизации. Правила разработки, принятия, применения, обновления и отмены»
Сведения о стандарте
1 РАЗРАБОТАН Федеральным государственным унитарным предприятием «Центральный научно-исследовательский институт черной металлургии им.И.П.Бардина» (ФГУП «ЦНИИчермет им.И.П.Бардина»)
2 ВНЕСЕН Межгосударственным техническим комитетом МТК 120 «Чугун, сталь, прокат»
3 ПРИНЯТ Межгосударственным советом по стандартизации, метрологии и сертификации (протокол от 3 декабря 2013 г. N 62-П)
За принятие проголосовали:
Краткое наименование страны по МК (ИСО 3166) 004-97
Сокращенное наименование национального органа по стандартизации
Минэкономики Республики Армения
Госстандарт Республики Беларусь
Госстандарт Республики Казахстан
4 Приказом Федерального агентства по техническому регулированию и метрологии от 28 октября 2014 г. N 1451-ст межгосударственный стандарт ГОСТ 1050-2013 введен в действие в качестве национального стандарта Российской Федерации с 1 января 2015 г.
5 ВЗАМЕН ГОСТ 1050-88 и ГОСТ 4543-71 в части стали марок 15Г, 20Г, 25Г, 30Г, 35Г, 40Г, 45Г, 50Г, 10Г2, 30Г2, 35Г2, 40Г2, 45Г2, 50Г2
ВНЕСЕНЫ: поправка, опубликованная в ИУС N 7, 2018 год; поправка, опубликованная в ИУС N 1, 2021 год
Поправки внесены изготовителем базы данных
1 Область применения
Настоящий стандарт распространяется на металлопродукцию горячекатаную, кованую, калиброванную и со специальной отделкой поверхности, предназначенную для использования в различных отраслях промышленности.
В части требований к химическому составу стандарт распространяется на слитки, блюмы, слябы, катаные, кованые и непрерывнолитые заготовки, поковки, штамповки, листовой и другие виды проката.
Настоящий стандарт распространяется на металлопродукцию из стали марок 05кп, 08кп, 08пс, 10кп, 10пс, 11кп, 15кп, 15пс, 18кп, 20кп и 20пс только в части требований к химическому составу.
2 Нормативные ссылки
В настоящем стандарте использованы ссылки на следующие межгосударственные стандарты:
ГОСТ 103-2006 Прокат сортовой стальной горячекатаный полосовой. Сортамент
ГОСТ 1051-73 Прокат калиброванный. Общие технические условия
ГОСТ 1133-71 Сталь кованая круглая и квадратная. Сортамент
ГОСТ 1497-84 (ИСО 6892-84) Металлы. Методы испытания на растяжение
ГОСТ 1763-68 (ИСО 3897-77) Сталь. Методы определения глубины обезуглероженного слоя
ГОСТ 2590-2006 Прокат сортовой стальной горячекатаный круглый. Сортамент
ГОСТ 2591-2006 Прокат сортовой стальной горячекатаный квадратный. Сортамент
ГОСТ 2789-73 Шероховатость поверхности. Параметры и характеристики
ГОСТ 2879-2006 Прокат сортовой стальной горячекатаный шестигранный. Сортамент
ГОСТ 4405-75 Полосы горячекатаные и кованые из инструментальной стали. Сортамент
ГОСТ 5157-83 Профили стальные горячекатаные разных назначений. Сортамент
ГОСТ 5639-82 Стали и сплавы. Методы выявления и определения величины зерна
ГОСТ 5657-69 Сталь. Метод испытания на прокаливаемость
ГОСТ 7417-75 Сталь калиброванная круглая. Сортамент
ГОСТ 7564-97 Прокат. Общие правила отбора проб, заготовок и образцов для механических и технологических испытаний
ГОСТ 7565-81 (ИСО 377-2-89) Чугун, сталь и сплавы. Метод отбора проб для определения химического состава
ГОСТ 7566-94 Металлопродукция. Приемка, маркировка, упаковка, транспортирование и хранение
ГОСТ 8559-75 Сталь калиброванная квадратная. Сортамент
ГОСТ 8560-78 Прокат калиброванный шестигранный. Сортамент
ГОСТ 8817-82 Металлы. Метод испытания на осадку
ГОСТ 9012-59 (ИСО 410-82, ИСО 6506-81) Металлы. Метод измерения твердости по Бринеллю
ГОСТ 9013-59 Металлы. Метод измерения твердости по Роквеллу
ГОСТ 9454-78 Металлы. Метод испытаний на ударный изгиб при пониженных, комнатной и повышенных температурах
ГОСТ 10243-75 Сталь. Методы испытаний и оценки макроструктуры
ГОСТ 12349-83 Стали легированные и высоколегированные. Методы определения вольфрама
ГОСТ 12354-81 Стали легированные и высоколегированные. Методы определения молибдена
ГОСТ 12359-99 (ИСО 4945-77) Стали углеродистые, легированные и высоколегированные. Методы определения азота
ГОСТ 12361-2002 Стали легированные и высоколегированные. Методы определения ниобия
ГОСТ 14955-77 Сталь качественная круглая со специальной отделкой поверхности. Технические условия
ГОСТ 17745-90 Стали и сплавы. Методы определения газов
ГОСТ 18895-97 Сталь. Метод фотоэлектрического спектрального анализа
ГОСТ 21014-88 Прокат черных металлов. Термины и определения дефектов поверхности
ГОСТ 21120-75 Прутки и заготовки круглого и прямоугольного сечения. Методы ультразвуковой дефектоскопии
ГОСТ 21650-76 Средства скрепления тарно-штучных грузов в транспортных пакетах. Общие требования
ГОСТ 22235-2010 Вагоны грузовые магистральных железных дорог колеи 1520 мм. Общие требования по обеспечению сохранности при производстве погрузочно-разгрузочных и маневровых работ
ГОСТ 22536.0-87 Сталь углеродистая и чугун нелегированный. Общие требования к методам анализа
ГОСТ 22536.1-88 Сталь углеродистая и чугун нелегированный. Методы определения общего углерода и графита
ГОСТ 22536.2-87 Сталь углеродистая и чугун нелегированный. Методы определения серы
ГОСТ 22536.3-88 Сталь углеродистая и чугун нелегированный. Методы определения фосфора
ГОСТ 22536.4-88 Сталь углеродистая и чугун нелегированный. Методы определения кремния
ГОСТ 22536.5-87 (ИСО 629-82) Сталь углеродистая и чугун нелегированный. Методы определения марганца
ГОСТ 22536.6-88 Сталь углеродистая и чугун нелегированный. Методы определения мышьяка
ГОСТ 22536.7-88 Сталь углеродистая и чугун нелегированный. Методы определения хрома
ГОСТ 22536.8-87 Сталь углеродистая и чугун нелегированный. Методы определения меди
ГОСТ 22536.9-88 Сталь углеродистая и чугун нелегированный. Методы определения никеля
ГОСТ 22536.10-88 Сталь углеродистая и чугун нелегированный. Методы определения алюминия
ГОСТ 22536.11-87 Сталь углеродистая и чугун нелегированный. Методы определения титана
ГОСТ 22536.12-88 Сталь углеродистая и чугун нелегированный. Методы определения ванадия
4. Требования к материалам
4.1 Общие требования
4.1.1 Требования к основным материалам, их пределы применения, назначение, условия применения. виды испытаний должны удовлетворять требованиям приложений А—Л. Допускается применение импортных материалов, если их применение предусмотрено соответствующими Техническими регламентами на сосуды, работающие под давлением.
Материалы, применяемые для изготовления деталей и сборочных единиц, работающих под давлением, должны быть в термообработанном состоянии (кроме листового проката по ГОСТ 14637).
4.1.2 Качество и характеристики материалов должны быть подтверждены предприятием-поставщиком в соответствующих сертификатах.
Сертификаты на материалы следует хранить на предприятии — изготовителе сосуда не менее назначенного срока службы сосуда.
4.1.3 При отсутствии сопроводительных сертификатов на материалы или данных об отдельных видах испытаний должны быть проведены испытания на предприятии — изготовителе сосуда в соответствии с требованиями настоящего стандарта, стандартов или технических условий на эти материалы.
4.1.4 При выборе материалов для изготовления сосудов необходимо учитывать расчетное давление. температуру стенки (максимальную и минимальную), химический состав и характер среды, технологические свойства и коррозионную стойкость материалов, а также климатические условия района установки сосудов.
Для сосудов из углеродистых, низколегированных, марганцовистых и марганцево-кремнистых сталей, устанавливаемых на открытой площадке или в неотапливаемом помещении, минимальную температуру стенки при выборе материалов устанавливают по строительным нормам и правилам государств, упомянутых в предисловии как проголосовавшие за принятие межгосударственного стандарта, и принимают равной:
При этом пуск, остановку и испытания на герметичность выполняют в соответствии с приложением М, если нет других указаний в технической документации.
Изготовление сосудов из хромистых, хромомолибденовых и хромомолибденованадиевых сталей, устанавливаемых на открытой площадке или в неотапливаемом помещении, допускается, если рабочая температура эксплуатации положительная. При этом пуск, остановку и испытания на герметичность выполняют в соответствии с приложением М.
4.1.5 Материал опор, проектируемых, рассчитываемых и изготовляемых в соответствии с настоящим стандартом. ГОСТ 34233.5 и ГОСТ 34233.9. выбирают по строительным нормам и правилам государств, упомянутых в предисловии как проголосовавшие за принятие межгосударственного стандарта, и принимают с учетом температуры наружного воздуха наиболее холодных суток района установки сосуда с обеспеченностью 0.92.
4.1.6 Элементы, привариваемые непосредственно к корпусу сосуда изнутри или снаружи (лапы, цилиндрические опоры, подкладные листы, подкладки под фирменные пластинки, опорные кольца под тарелки и др.). необходимо изготовлять из материалов того же структурного класса, что и корпус, если в технической документации на сосуд нет соответствующего обоснования применения материалов разных структурных классов.
4.1.7 Коррозионно-стойкие стали (лист, трубы, сварочные материалы, поковки, отливки и штампованные детали) при наличии требований должны быть проверены на стойкость к межкристаллитной коррозии в соответствии с ГОСТ 6032.
4.1.8 Допускается снижение нижнего температурного предела применения листового и сортового проката, труб и поковок из углеродистых и низколегированных сталей не более чем на 20 ºС, если:
4.2 Листовая сталь
4.2.1 В углеродистых и низколегированных сталях содержание серы и фосфора должно быть указано в процентах (%) соответственно не более: по ГОСТ 5520, ГОСТ 1577 — 0.025 и 0,035; по ГОСТ 19281 — 0.025 и 0.030; по ГОСТ 14637 — 0.04 и 0.030.
4.2.2 Для проката по ГОСТ 5520, ГОСТ 14637, ГОСТ 19281 допускается переводить сталь из одной категории в другую при условии проведения необходимых дополнительных испытаний в соответствии с требованиями указанных стандартов.
4.2.3 Коррозионно-стойкая, жаростойкая и жаропрочная толстолистовая сталь по ГОСТ 7350 должна быть термически обработанной, травленой, с качеством поверхности по группе М2б. По указанию разработчика сосуда должны быть оговорены требования по содержанию ферритной фазы.
4.2.4 Листовая сталь, за исключением сталей аустенитного класса, толщиной листа более 30 мм, предназначенная для сосудов, работающих под давлением, должна быть полистно проконтролирована на сплошность ультразвуковым или другим равноценным методом. Методы контроля должны соответствовать ГОСТ 22727, нормы контроля — 1-му классу по ГОСТ 22727.
4.2.5 Листы из двухслойных сталей, предназначенные для сосудов, работающих под давлением, необходимо контролировать ультразвуковым методом на сплошность сцепления слоев полистно. Нормы контроля — по 1-му классу сплошности по ГОСТ 10885.
Твердость плакирующего слоя должна быть не более 220 НВ.
4.3 Трубы
4.3.1 При заказе труб по ГОСТ 9940 необходимо оговаривать требования по очистке от окалины и термообработке труб.
4.3.2 Трубы, закрепляемые в сосудах методом развальцовки, необходимо испытывать на раздачу, в остальных случаях — на загиб или сплющивание в соответствии со стандартами на трубы.
4.3.3 Допускается применять бесшовные трубы без проведения гидравлического испытания на предприятии — изготовителе труб в случае, если труба подвергается по всей поверхности контролю физическими методами (ультразвуковым или равноценным).
4.4 Поковки
4.4.1 Каждая поковка из углеродистой, низколегированной и легированной сталей, предназначенная для работы под номинальным давлением более 6.3 МПа и имеющая один из габаритных размеров (диаметр) более 200 мм и/или толщину более 50 мм. должна быть проконтролирована ультразвуковым или другим равноценным методом. Поковки из аустенитных и аустенитно-ферритных высоколегированных сталей, работающие под давлением более указанного номинального давления, необходимо подвергать неразрушающему контролю при наличии этого требования.
Контролю ультразвуковым или другим равноценным методом необходимо подвергать не менее 50 % объема поковки.
4.4.2 Каждая поковка для плоских днищ, кроме поковок из высоколегированных сталей, должна быть проконтролирована ультразвуковым методом в зоне А в направлении z [см. рисунки 4 а) и 4 б)] по всей площади.
4.5 Стальные отливки
4.5.1 Стальные отливки необходимо применять в термообработанном состоянии с проверкой механических свойств после термической обработки.
4.5.3 Каждую полую отливку, работающую при давлении свыше 0,05 МПа. подвергают гидравлическому испытанию пробным давлением, указанным в технических условиях и ГОСТ 356.
Испытание отливок, прошедших на предприятии-изготовителе 100%-ный контроль неразрушающими методами, допускается совмещать с испытанием собранного узла или сосуда пробным давлением. установленным для узла или сосуда.
4.6 Крепежные детали
4.6.1 Требования к материалам, виды их испытаний, пределы применения, назначение и условия применения должны удовлетворять требованиям приложения Ж.
4.6.2 Материалы шпилек и болтов необходимо выбирать с коэффициентом линейного расширения. близким по значению коэффициенту линейного расширения материала фланца. При этом разница в значениях коэффициентов линейного расширения не должна превышать 10 %. Возможность применения материалов шпилек (болтов) и фланцев с коэффициентами линейного расширения, значения которых отличаются между собой более чем на 10 %. должна быть подтверждена расчетом на прочность.
4.6.3 Для шпилек (болтов) из аустенитных сталей допускается применять гайки из сталей других структурных классов.
4.6.4 Для сталей одного структурного класса твердость гаек должна быть ниже твердости шпилек (болтов) не менее чем на 15 НВ.
4.7 Сварочные и наплавочные материалы
Сварочные и наплавочные материалы должны соответствовать применяемым технологиям сварки, обладать технологическими характеристиками, обеспечивающими установленные свойства сварных соединений. Также при выборе материалов следует учитывать требования 4.1.4.
Материалы следует поставлять с сертификатами качества предприятия-изготовителя, подтверждающими их характеристики.
Хранение и условия применения сварочных и наплавочных материалов должны соответствовать указаниям производителя данных материалов.
- антхилл в мобайл легенд что
- Разбираемся с понятием развал схождения в автомобильном мире