какие требования предъявляются к алгоритмам

1. Основы алгоритмизации

1.1. Алгоритмизация и требования к алгоритму

1.1.1. Алгоритм и алгоритмизация

Процессор электронно-вычислительной машины (ЭВМ) или персонального компьютера (ПК) — это ее «мозг», который умеет выполнять лишь простейшие команды. Для решения сложных задач обработки информации программист должен составить алгоритм — подробное описание последовательности арифметических и логических действий, расположенных в строгом логическом порядке и позволяющих решить конкретную задачу. Составление такого пошагового описания процесса решения задачи называется ее алгоритмизацией. Слово алгоритм, по существу, является синонимом таких слов, как способ, рецепт и т. п.

Требования, предъявляемые к алгоритму:

1. Однозначность — предлагаемые действия должны быть «понятны» компьютеру, а порядок исполнения этих действий должен быть единственно возможным, любая неопределенность или двусмысленность недопустимы.

2. Массовость — пригодность алгоритма для решения не только данной задачи, а множества родственных задач, относящихся к общему классу.

3. Детерминированность — повтор результата при повторе исходных данных.

4. Корректность — способность алгоритма давать правильные результаты решения задачи при различных исходных данных.

5. Конечность — решение задачи должно быть полученоза конечное число шагов алгоритма, «зацикливание» недопустимо.

6. Эффективность — для успешного решения задачи должны использоваться ограниченные ресурсы конкретного компьютера (время работы процессора, объем оперативной памяти, быстродействие жесткого диска и др.).

&nbspменю &nbsp &nbsp &nbsp &nbsp вверх &nbsp &nbsp &nbsp &nbsp &nbspследующая

Источник

Требования, предъявляемые к алгоритму

Алгоритм. Свойства алгоритма

Понятие информации

Одним из фундаментальных понятий в информатике является понятие алгоритма. Происхождение самого термина «алгоритм» связано с математикой. Это слово происходит от Algorithmi – латинского написания имени Мухаммеда аль-Хорезми (787 – 850) выдающегося математика средневекового Востока. В своей книге «Об индийском счете» он сформулировал правила записи натуральных чисел с помощью арабских цифр и правила действий над ними столбиком. В дальнейшем алгоритмом стали называть точное предписание, определяющее последовательность действий, обеспечивающую получение требуемого результата из исходных данных.

Данное выше определение алгоритма нельзя считать строгим – не вполне ясно, что такое «точное предписание» или «последовательность действий, обеспечивающая получение требуемого результата».

Поэтому обычно формулируют несколько общих свойств алгоритмов, позволяющих отличать алгоритмы от других инструкций.

Такими свойствами являются:

Дискретность (прерывность, раздельность) – алгоритм должен представлять процесс решения задачи как последовательное выполнение простых (или ранее определенных) шагов. Каждое действие, предусмотренное алгоритмом, исполняется только после того, как закончилось исполнение предыдущего.

Определенность – каждое правило алгоритма должно быть четким, однозначным и не оставлять места для произвола. Благодаря этому свойству выполнение алгоритма носит механический характер и не требует никаких дополнительных указаний или сведений о решаемой задаче.

Результативность (конечность) – алгоритм должен приводить к решению задачи за конечное число шагов.

Массовость – алгоритм решения задачи разрабатывается в общем виде, то есть, он должен быть применим для некоторого класса задач, различающихся только исходными данными. При этом исходные данные могут выбираться из некоторой области, которая называется областью применимости алгоритма.

На основании этих свойств иногда дается определение алгоритма, например: “Алгоритм – это последовательность математических, логических или вместе взятых операций, отличающихся детерменированностью, массовостью, направленностью и приводящая к решению всех задач данного класса за конечное число шагов”.

Такая трактовка понятия “алгоритм” является неполной и неточной.

Во-первых, неверно связывать алгоритм с решением какой-либо задачи. Алгоритм вообще может не решать никакой задачи.

Во-вторых, понятие “массовость” относится не к алгоритмам как к таковым, а к математическим методам в целом. Решение поставленных практикой задач математическими методами основано на абстрагировании – мы выделяем ряд существенных признаков, характерных для некоторого круга явлений, и строим на основании этих признаков математическую модель, отбрасывая несущественные признаки каждого конкретного явления. В этом смысле любая математическая модель обладает свойством массовости. Если в рамках построенной модели мы решаем задачу и решение представляем в виде алгоритма, то решение будет “массовым” благодаря природе математических методов, а не благодаря “массовости” алгоритма.

Виды алгоритмов

Виды алгоритмов как логико-математических средств отражают указанные компоненты человеческой деятельности и тенденции, а сами алгоритмы в зависимости от цели, начальных условий задачи, путей ее решения, определения действий исполнителя подразделяются следующим образом:

Механические алгоритмы, или иначе детерминированные, жесткие (например, алгоритм работы машины, двигателя и т.п.);

Гибкие алгоритмы, например стохастические, т.е. вероятностные и эвристические. Механический алгоритм задает определенные действия, обозначая их в единственной и достоверной последовательности, обеспечивая тем самым однозначный требуемый или искомый результат, если выполняются те условия процесса, задачи, для которых разработан алгоритм.

Вероятностный (стохастический) алгоритм дает программу решения задачи несколькими путями или способами, приводящими к вероятному достижению результата.

Эвристический алгоритм (от греческого слова “эврика”) – это такой алгоритм, в котором достижение конечного результата программы действий однозначно не предопределено, так же как не обозначена вся последовательность действий, не выявлены все действия исполнителя. К эвристическим алгоритмам относят, например, инструкции и предписания. В этих алгоритмах используются универсальные логические процедуры и способы принятия решений, основанные на аналогиях, ассоциациях и прошлом опыте решения схожих задач.

какие требования предъявляются к алгоритмам. Смотреть фото какие требования предъявляются к алгоритмам. Смотреть картинку какие требования предъявляются к алгоритмам. Картинка про какие требования предъявляются к алгоритмам. Фото какие требования предъявляются к алгоритмамЛинейный алгоритм – набор команд (указаний), выполняемых последовательно во времени друг за другом.

Разветвляющийся алгоритм – алгоритм, содержащий хотя бы одно условие, в результате проверки которого ЭВМ обеспечивает переход на один из двух возможных шагов.

Циклический алгоритм – алгоритм, предусматривающий многократное повторение одного и того же действия (одних и тех же операций) над новыми исходными данными. К циклическим алгоритмам сводится большинство методов вычислений, перебора вариантов.

Цикл программы – последовательность команд (серия, тело цикла), которая может выполняться многократно (для новых исходных данных) до удовлетворения некоторого условия.

Вспомогательный (подчиненный) алгоритм (процедура) – алгоритм, ранее разработанный и целиком используемый при алгоритмизации конкретной задачи. В некоторых случаях при наличии одинаковых последовательностей указаний (команд) для различных данных с целью сокращения записи также выделяют вспомогательный алгоритм.

На всех этапах подготовки к алгоритмизации задачи широко используется структурное представление алгоритма.

какие требования предъявляются к алгоритмам. Смотреть фото какие требования предъявляются к алгоритмам. Смотреть картинку какие требования предъявляются к алгоритмам. Картинка про какие требования предъявляются к алгоритмам. Фото какие требования предъявляются к алгоритмамСтруктурная (блок-, граф-) схема алгоритма – графическое изображение алгоритма в виде схемы связанных между собой с помощью стрелок (линий перехода) блоков – графических символов, каждый из которых соответствует одному шагу алгоритма. Внутри блока дается описание соответствующего действия.

Графическое изображение алгоритма широко используется перед программированием задачи вследствие его наглядности, т.к. зрительное восприятие обычно облегчает процесс написания программы, ее корректировки при возможных ошибках, осмысливание процесса обработки информации.

Можно встретить даже такое утверждение: “Внешне алгоритм представляет собой схему – набор прямоугольников и других символов, внутри которых записывается, что вычисляется, что вводится в машину и что выдается на печать и другие средства отображения информации “. Здесь форма представления алгоритма смешивается с самим алгоритмом.

Требования, предъявляемые к алгоритму

Первое правило – при построении алгоритма прежде всего необходимо задать множество объектов, с которыми будет работать алгоритм. Формализованное (закодированное) представление этих объектов носит название данных. Алгоритм приступает к работе с некоторым набором данных, которые называются входными, и в результате своей работы выдает данные, которые называются выходными. Таким образом, алгоритм преобразует входные данные в выходные. Это правило позволяет сразу отделить алгоритмы от “методов” и “способов”. Пока мы не имеем формализованных входных данных, мы не можем построить алгоритм.

Второе правило – для работы алгоритма требуется память. В памяти размещаются входные данные, с которыми алгоритм начинает работать, промежуточные данные и выходные данные, которые являются результатом работы алгоритма. Память является дискретной, т.е. состоящей из отдельных ячеек. Поименованная ячейка памяти носит название переменной. В теории алгоритмов размеры памяти не ограничиваются, т. е. считается, что мы можем предоставить алгоритму любой необходимый для работы объем памяти. В школьной “теории алгоритмов” эти два правила не рассматриваются. В то же время практическая работа с алгоритмами (программирование) начинается именно с реализации этих правил.

В языках программирования распределение памяти осуществляется декларативными операторами (операторами описания переменных). В языке Бейсик не все переменные описываются, обычно описываются только массивы. Но все равно при запуске программы транслятор языка анализирует все идентификаторы в тексте программы и отводит память под соответствующие переменные.

Третье правило – дискретность. Алгоритм строится из отдельных шагов (действий, операций, команд). Множество шагов, из которых составлен алгоритм, конечно.

Четвертое правило – детерменированность. После каждого шага необходимо указывать, какой шаг выполняется следующим, либо давать команду остановки. Пятое правило – сходимость (результативность). Алгоритм должен завершать работу после конечного числа шагов. При этом необходимо указать, что считать результатом работы алгоритма.

Источник

11.1. Основные требования к алгоритмам

1. Каждый алгоритм имеет дело с Данными — входными, промежуточными, выходными. Для того чтобы уточнить понятие данных, фиксируется конечный алфавит исходных символов (цифры, буквы и т. п.) и указываются правила построения алгоритмических объектов. Типичным используемым средством является индуктивное построение. Например, определение идентификатора в языке программирования может выглядеть следующим образом: идентификатор — это либо буква, либо идентификатор, к которому приписана справа либо буква, либо цифра. Слова конечной длины в конечных алфавитах — наиболее обычный тип алгоритмических данных, а число символов в слове — естественная мера объема данных. Другой случай алгоритмических объектов — формулы. Примером могут служить формулы алгебры предикатов и алгебры высказываний. В этом случае не каждое слово в алфавите будет формулой.

2. Алгоритм для размещения данных требует Памяти. Память обычно считается однородной и дискретной, т. е. она состоит из одинаковых ячеек, причем каждая ячейка может содержать один символ данных, что позволяет согласовать единицы измерения объема данных и памяти.

3. Алгоритм состоит из отдельных Элементарных шагов, причем множество различных шагов, из которых составлен алгоритм, конечно. Типичный пример множества элементарных шагов — система команд ЭВМ.

4. Последовательность шагов алгоритма Детерминирована, т. е. после каждого шага указывается, какой шаг следует выполнять дальше, либо указывается, когда следует работу алгоритма считать законченной.

5. Алгоритм должен обладать Результативностью, т. е. останавливаться после конечного числа шагов (зависящего от исходных данных) с выдачей результата. Данное свойство иногда называют сходимостью алгоритма.

6. Алгоритм предполагает наличие Механизма реализации, который по описанию алгоритма порождает процесс вычисления на основе исходных данных. Предполагается, что описание алгоритма и механизм его реализации конечны.

Можно заметить аналогию с вычислительными машинами. Требование 1 соответствует цифровой природе ЭВМ, требование 2 — памяти ЭВМ, требование 3 — программе машины, требование 4 — ее логической природе, требования 5, 6 — вычислительному устройству и его возможностям.

Имеются также некоторые черты неформального понятия алгоритма, относительно которых не достигнуто окончательного соглашения. Эти черты сформулируем в виде вопросов и ответов.

7. Следует ли фиксировать конечную границу для размера входных данных?

8. Следует ли фиксировать конечную границу для числа элементарных шагов?

9. Следует ли фиксировать конечную границу для размера памяти?

10. Следует ли ограничить число шагов вычисления?

На все эти вопросы далее принимается ответ «НЕТ», хотя возможны и другие варианты ответов, поскольку у физически существующих ЭВМ соответствующие размеры ограничены. Однако теория, изучающая алгоритмические вычисления, осуществимые в принципе, не должна считаться с такого рода ограничениями, поскольку они преодолимы по крайней мере в принципе (например, вообще говоря, любой фиксированный размер памяти всегда можно увеличить на одну ячейку).

Таким образом, уточнение понятия алгоритма связано с уточнением алфавита данных и формы их представления, памяти и размещения в ней данных, элементарных шагов алгоритма и механизма реализации алгоритма. Однако эти понятия сами нуждаются в уточнении. Ясно, что их словесные определения потребуют введения новых понятий, для которых, в свою очередь, снова потребуются уточнения и т. д. Поэтому в теории алгоритмов принят другой подход, основанный на конкретной алгоритмической модели, в которой все сформулированные требования выполняются очевидным образом. При этом используемые алгоритмические модели Универсальны, т. е. моделируют любые другие разумные алгоритмические модели, что позволяет снять возможное возражение против такого подхода: не приводит ли жесткая фиксация алгоритмической модели к потере общности формализации алгоритма? Поэтому данные алгоритмические модели отождествляются с формальным понятием алгоритма. В дальнейшем будут рассмотрены основные типы алгоритмических моделей, различающиеся исходными трактовками, что такое алгоритм.

Первый тип трактует алгоритм как некоторое детерминированное устройство, способное выполнять в каждый момент лишь строго фиксированное множество операций. Основной теоретической моделью такого типа является машина Тьюринга, предложенная им в 30-х годах XX века и оказавшая существенное влияние на понимание логической природы разрабатываемых ЭВМ. Другой теоретической моделью данного типа является машина произвольного доступа (МПД), введенная достаточно недавно (в 70-х годах) с целью моделирования реальных вычислительных машин и получения оценок сложности вычислений.

Второй тип связывает понятие алгоритма с традиционным представлением — процедурами вычисления значений числовых функций. Основной теоретической моделью этого типа являются рекурсивные функции — исторически первая формализация понятия алгоритма.

Третий тип алгоритмических моделей — это преобразования слов в произвольных алфавитах, в которых операциями являются замены кусков слов другим словом. Основной теоретической моделью этого типа являются нормальные алгоритмы Маркова.

Теория алгоритмов оказала существенное влияние на развитие ЭВМ и практику программирования. В теории алгоритмов были предугаданы основные концепции, заложенные в аппаратуру и языки программирования ЭВМ. Упоминаемые выше главные алгоритмические модели математически эквивалентны, но на практике они существенно различаются сложностными эффектами, возникающими при реализации алгоритмов, и породили разные направления в программировании. Так, микропрограммирование строится на идеях машин Тьюринга; структурное программирование заимствовало свои конструкции из теории рекурсивных функций; языки символьной обработки информации (РЕФАЛ, ПРОЛОГ) берут начало от нормальных алгоритмов Маркова и систем Поста.

Авторы обзора[3] основных достижений теории алгоритмов пишут: «Алгоритмические концепции играют в процессе обучения и воспитания современного человека фундаментальную роль, сравнимую лишь с ролью письменности».

Источник

Алгоритм, содержащий цикл и ветвление

Теория к заданию 20 из ЕГЭ по информатике

Алгоритмизация и программирование

Алгоритмы, виды алгоритмов, описание алгоритмов. Формальное исполнение алгоритмов

Термин «алгоритм», впервые употребленный в современном значении. Лейбницем (1646–1716), является латинизированной формой имени великого персидского математика Мухаммеда бен Муссы аль-Хорезми (ок. 783 – ок. 850). Его книга «Об индийском счете» в XII в. была переведена на латинский язык и пользовалась широкой популярностью не одно столетие. Имя автора европейцы произносили как Алгоритми (Algorithmi), и со временем так стали называть в Европе всю систему десятичной арифметики.

Научное определение алгоритма дал А. Чёрч в 1930 году. В наше время понятие алгоритма является одним из основополагающих понятий вычислительной математики и информатики.

Алгоритм — это точное и полное описание последовательности действий над заданными объектами, позволяющее получить конечный результат.

Можно сказать, что алгоритм решения какой-либо задачи — это последовательность шагов реализации (или нахождения) этого решения, а процесс построения алгоритма (алгоритмизация) — разложение задачи на элементарные действия или операции.

Область математики, известная как теория алгоритмов, посвящена исследованию свойств, способов записи, области применения различных алгоритмов, а также созданию новых алгоритмов. Теория алгоритмов находит широкое применение в различных областях деятельности человека — в технике, производстве, медицине, образовании и т. д. Появление компьютера позволило решать чрезвычайно сложные, трудоемкие задачи.

Определение алгоритма для применения в области информатики нуждается в некотором уточнении. Во-первых, решение задач в информатике всегда связано с преобразованием информации, а значит, исходными данными и результатом работы алгоритма должна быть информация. Это может быть представлено в виде схемы.

какие требования предъявляются к алгоритмам. Смотреть фото какие требования предъявляются к алгоритмам. Смотреть картинку какие требования предъявляются к алгоритмам. Картинка про какие требования предъявляются к алгоритмам. Фото какие требования предъявляются к алгоритмам

Во-вторых, алгоритмы в информатике предназначены для реализации в виде компьютерных программ или для создания некоторой компьютерной технологии. Для выполнения алгоритма требуется конечный объем оперативной памяти и конечное время.

Основные требования, предъявляемые к алгоритмам:

Дискретность (прерывность): алгоритм должен представлять решение задачи в виде последовательности простых (или ранее определенных) этапов (шагов). Каждый шаг алгоритма формулируется в виде инструкций (команд).

Определенность (детерминированность; лат. determinate — определенность, точность): шаги (операции) алгоритма должны допускать однозначную трактовку и быть понятными для исполнителя алгоритма. Это свойство указывает на то, что любое действие в алгоритме должно быть строго определено и описано для каждого случая.

Массовость: алгоритм должен давать решение не только для конкретного набора значений, а для целого класса задач, который определяется диапазоном возможных исходных данных (область применимости алгоритма). Свойство массовости подразумевает использование переменных в качестве исходных данных алгоритма.

Результативность: алгоритм должен давать конкретный результат, т. е. должны быть рассмотрены все возможные ситуации и для каждой из них получен результат. Под результатом может пониматься и сообщение о том, что задача решения не имеет.

Конечность: количество шагов алгоритма должно быть конечным.

Эффективность: количество шагов и сами шаги алгоритма должны быть такими, чтобы решение могло быть найдено за конечное и, более того, приемлемое время.

Для оценки и сравнения алгоритмов существует много критериев. Чаще всего анализ алгоритма (или, как говорят, анализ сложности алгоритма) состоит в оценке временных затрат на решение задачи в зависимости от объема исходных данных. Используются также термины «временная сложность», «трудоемкость» алгоритма. Фактически эта оценка сводится к подсчету количества основных операций в алгоритме, поскольку каждая из них выполняется за заранее известное конечное время. Кроме временной сложности, должна оцениваться также емкостная сложность, т. е. увеличение затрат памяти в зависимости от размера исходных данных. Оценка сложности дает количественный критерий для сравнения алгоритмов, предназначенных для решения одной и той же задачи. Оптимальным (наилучшим) считается алгоритм, который невозможно значительно улучшить в плане временных и емкостных затрат.

Анализом сложности алгоритмов, исследованием классов задач, решаемых с помощью алгоритмов той или иной сложности, и многими другими теоретическими вопросами занимается специальная область информатики.

Алгоритмы можно представлять как некоторые структуры, состоящие из отдельных базовых элементов.

Логическая структура любого алгоритма может быть представлена комбинацией трех базовых структур:

Для описания алгоритмов наиболее распространены следующие методы (языки):

Обычный язык. Изложение алгоритма ведется на обычном языке с разделением на последовательные шаги.

Блок-схемы. Графическое изображение алгоритма с помощью специальных значков-блоков.

Формальные алгоритмические языки (языки программирования). При записи алгоритмов используют строго определенный набор символов и составленных из них специальных зарезервированных слов. Имеют строгие правила построения языковых конструкций.

Псевдокод. Синтез алгоритмического и обычного языков. Элементы некоторого базового алгоритмического языка используются для строгой записи базовых структур алгоритма.

Словесный способ (запись на обычном языке) не имеет широкого распространения, т. к. таких описаний есть ряд недостатков:

Графический способ представления информации является более наглядным и компактным по сравнению со словесным. При графическом представлении алгоритм изображается в виде последовательности связанных между собой функциональных блоков, каждый из которых соответствует выполнению одного или нескольких действий. Такое графическое представление алгоритма называется блок-схемой. Определенному типу действия (ввод/вывод данных, проверка условия, вычисление выражения, начало и конец алгоритма и т. п.) соответствует определенная геометрическая фигура — блочный символ. Блоки соединяются между собой линиями переходов, которые определяют очередность выполнения действий.

Название символаГрафическое изображениеКомментарии
Пуск/Останов (блоки начала и конца алгоритма)какие требования предъявляются к алгоритмам. Смотреть фото какие требования предъявляются к алгоритмам. Смотреть картинку какие требования предъявляются к алгоритмам. Картинка про какие требования предъявляются к алгоритмам. Фото какие требования предъявляются к алгоритмамУказание на начало или конец алгоритма
Ввод/Вывод данных (блоки ввода, выводакакие требования предъявляются к алгоритмам. Смотреть фото какие требования предъявляются к алгоритмам. Смотреть картинку какие требования предъявляются к алгоритмам. Картинка про какие требования предъявляются к алгоритмам. Фото какие требования предъявляются к алгоритмамОрганизация ввода/вывода в общем виде
Процесс (операторные блоки)какие требования предъявляются к алгоритмам. Смотреть фото какие требования предъявляются к алгоритмам. Смотреть картинку какие требования предъявляются к алгоритмам. Картинка про какие требования предъявляются к алгоритмам. Фото какие требования предъявляются к алгоритмамВыполнение вычислительного действия или последовательности действий (можно объединять в один блок), которые изменяют значение, форму представления или размещение данных
Условие (условный блок)какие требования предъявляются к алгоритмам. Смотреть фото какие требования предъявляются к алгоритмам. Смотреть картинку какие требования предъявляются к алгоритмам. Картинка про какие требования предъявляются к алгоритмам. Фото какие требования предъявляются к алгоритмамВыбор направления выполнения алгоритма. Если условие, записанное внутри ромба, выполняется, то управление передается по стрелке «да», в противном случае — по стрелке «нет». Таким образом, реализуется процесс изменения последовательности вычислений в зависимости от выполнения условия
Начало цикла с параметромкакие требования предъявляются к алгоритмам. Смотреть фото какие требования предъявляются к алгоритмам. Смотреть картинку какие требования предъявляются к алгоритмам. Картинка про какие требования предъявляются к алгоритмам. Фото какие требования предъявляются к алгоритмамИспользуется для организации циклических конструкций с известным количеством итераций (повторений) и известным шагом изменения параметра цикла. Внутри блока для параметра цикла указываются через запятую его начальное значение, конечное значение и шаг изменения. Цикл, для которого неизвестно количество повторений, записывается с помощью условного и операторных блоков
Предопределенный процесскакие требования предъявляются к алгоритмам. Смотреть фото какие требования предъявляются к алгоритмам. Смотреть картинку какие требования предъявляются к алгоритмам. Картинка про какие требования предъявляются к алгоритмам. Фото какие требования предъявляются к алгоритмамИспользуется для указания обращений к вспомогательным алгоритмам, существующим автономно в виде некоторых самостоятельных модулей, и для обращения к библиотечным подпрограммам
Печать сообщений (документ)какие требования предъявляются к алгоритмам. Смотреть фото какие требования предъявляются к алгоритмам. Смотреть картинку какие требования предъявляются к алгоритмам. Картинка про какие требования предъявляются к алгоритмам. Фото какие требования предъявляются к алгоритмамВывод результатов на печать

При составлении блок-схемы необходимо проверять выполнение следующих условий:

Псевдокод занимает промежуточное положение между естественным языком и языками программирования. В псевдокоде не приняты строгие синтаксические правила для записи команд, что отличает формальные языки программирования. Однако в псевдокоде есть некоторые конструкции, которые присущи формальным языкам, что облегчает переход от записи алгоритма на псевдокоде к записи алгоритма на языке программирования. Псевдокоды бывают разные. Рассмотрим учебный (школьный) алгоритмический язык АЯ.

Алфавит учебного алгоритмического языка является открытым. В него могут быть введены любые понятные всем символы: русские и латинские буквы, знаки математических операций, знаки отношений, специальные знаки и т. д. Кроме алфавита, в алгоритмической нотации определяются служебные слова, которые являются неделимыми. Служебные слова обычно выделяются жирным шрифтом или подчеркиванием. К служебным словам относятся:

алг — заголовок алгоритманц — начало циклазнач
нач — начало алгоритмакц — конец циклаи
кон — конец алгоритмаданоили
арг — аргументнадоне
рез — результатеслида
цел — целыйтонет
сим — символьныйиначепри
лит — литерныйвсёвыбор
лог — логическийпокаутв
вещ — вещественныйдляввод
таб — таблицаотвывод
длин — длинадо

Общий вид записи алгоритма на псевдокоде:

алг — название алгоритма (аргументы и результаты)

дано — условие применимости алгоритма

надо — цель выполнения алгоритма

нач — описание промежуточных величин

последовательность команд (тело алгоритма)

Часть алгоритма от слова алг до слова нач называется заголовком, а часть, заключенная между словами нач и кон,телом алгоритма (исполняемой частью алгоритма).

В предложении алг после названия алгоритма в круглых скобках указываются характеристики (арг, рез) и тип значения (цел, вещ, сим, лит или лог) всех входных (аргументы) и выходных (результаты) переменных. При описании массивов (таблиц) используется служебное слово таб, дополненное именем массива и граничными парами по каждому индексу элементов массива.

Команды учебного языка:

1. Оператор присваивания, который обозначается «:=» и служит для вычисления выражений, стоящих справа, и присваивания их значений переменным, указанным в левой части. Например, если переменная а имела значение 5, то после выполнения оператора присваивания а := а + 1, значение переменной а изменится на 6.

2. Операторы ввода/вывода:

ввод (список имен переменных)

вывод (список вывода)

Список вывода может содержать комментарии, которые заключаются в кавычки.

3. Оператор ветвления (с использованием команды если. то… иначе…всё; выбор);

4. Операторы цикла (с использованием команд для, пока, до).

Запись алгоритма на псевдокоде:

какие требования предъявляются к алгоритмам. Смотреть фото какие требования предъявляются к алгоритмам. Смотреть картинку какие требования предъявляются к алгоритмам. Картинка про какие требования предъявляются к алгоритмам. Фото какие требования предъявляются к алгоритмам

Здесь в предложениях дано и надо после знака «|» записаны комментарии. Комментарии можно помещать в конце любой строки, они существенно облегчают понимание алгоритма.

При записи алгоритма в словесной форме, в виде блок-схемы или на псевдокоде допускается произвольное изображение команд. Вместе с тем такая запись позволяет понять человеку суть дела и исполнить алгоритм. Однако алгоритм, предназначенный для исполнения на компьютере, должен быть записан на строго формализованном языке. Такой язык называется языком программирования, а запись алгоритма на этом языке — компьютерной программой.

Для решения одной и той же задачи можно предложить несколько алгоритмов. Алгоритмы составляются с ориентацией на определенного исполнителя алгоритма. У каждого исполнителя имеется свой конечный набор команд, которые для него понятны и исполняемы. Этот набор называется системой команд исполнителя. Пользуясь системой команд, исполнитель может выполнить алгоритм формально, не вникая в содержание поставленной задачи. От исполнителя требуется только строгое выполнение последовательности действий, предусмотренной алгоритмом. Таким образом, в общем случае алгоритм претерпевает изменения по стадиям:

Примеры решения задач

Пример 1. Исполнитель Утроитель может выполнить только две команды, которым присвоены номера:

Первая команда уменьшает число на 1, вторая — увеличивает его втрое.

Написать набор команд (не более пяти) получения из числа 3 числа 16. В ответе указать только номера команд.

Пример 2. Имеется Исполнитель алгоритма, который может передвигаться по числовой оси.

Система команд Исполнителя алгоритма:

1. «Вперед N» (Исполнитель алгоритма делает шаг вперед на N единиц).

2. «Назад M» (Исполнитель алгоритма делает шаг назад на M единиц).

Переменные N и M могут принимать любые целые положительные значения. Известно, что Исполнитель алгоритма выполнил программу из 50 команд, в которой команд «Назад 2» на 12 больше, чем команд «Вперед 3». Других команд в программе не было. Какой одной командой можно заменить эту программу, чтобы Исполнитель алгоритма оказался в той же точке, что и после выполнения программы?

1. Найдем, сколько было команд «Вперед», а сколько «Назад». Учитывая, что общее количество команд равно 50 и что команд «Назад» на 12 больше, чем команд «Вперед». Получим уравнение: x + (x + 12) = 50, где x — количество команд «Вперед». Тогда общее количество команд «Вперед»: x = 19, а количество команд «Назад»: 19 + 12 = 31.

2. Будем вести отсчет от начала числовой оси. Выполнив 19 раз команду «Вперед 3», Исполнитель алгоритма оказался бы на отметке числовой оси 57 (19 * 3 = 57). После выполнения 31 раз команды «Назад 2» (31 * 2 = 62) он оказался бы на отметке –5 (57 – 62 = –5).

3. Все эти команды можно заменить одной — «Назад 5».

Ответ: команда«Назад 5».

Пример 3. Черепашка является исполнителем для создания графических объектов на рабочем поле. При движении Черепашка оставляет след в виде линии. Черепашка может исполнять следующие команды:

Название командыПараметрДействия исполнителя
впЧисло шаговПродвигается в направлении головы на указанное число шагов
ндЧисло шаговПродвигается в направлении, противоположном направлению головы на указанное число шагов
прЧисло градусовПоворачивается направо относительно направления, заданного головой черепашки
лвЧисло градусовПоворачивается налево относительно направления, заданного головой черепашки

Для записи повторяющихся действий (цикла) используется команда Повтори. В этой команде два параметра: первый задает количество повторений (итераций), а второй — список команд которые должны повторяться (тело цикла); список заключается в квадратные скобки.

Записать для исполнителя Черепашка алгоритмы:

а) построения квадрата со стороной 100;

б) построения правильного шестиугольника со стороной 50.

в) построения изображения цифры 4, если голова Черепашки смотрит на север.

Ответ: а) Повтори 4 [вп 100 пр 90]; б) Повтори 6 [вп 50 пр 360/6]; в) вп 100; повтори [лв 135 вп 50].

Пример 4. Два игрока играют в следующую игру (это вариант восточной игры). Перед ними лежат три кучки камней, в первой из которых 2, во второй — 3, в третьей — 4 камня. У каждого игрока неограниченно много камней. Игроки ходят по очереди. Ход состоит в том, что игрок или удваивает число камней в одной из кучек, или добавляет по два камня в каждую из них. Выигрывает игрок, после хода которого либо в одной из кучек становится не менее 15 камней, либо общее число камней в трех кучках становится не менее 25. Кто выиграет при безошибочной игре обоих игроков — игрок, делающий первый ход, или игрок, делающий второй ход? Каким должен быть первый ход выигрывающего игрока? Ответ следует обосновать.

Решение. Удобнее всего составить таблицу возможных ходов обоих игроков. Заметим, что в каждом случае возможны всего четыре варианта хода. В таблице курсивом выделены случаи, которые сразу же приносят поражение игроку, делающему этот ход (например, когда камней в какой-либо кучке становится больше или равно 8, другой игрок непременно выигрывает следующим ходом, удваивая количество камней в этой кучке). Из таблицы видно, что при безошибочной игре обоих игроков первый всегда выиграет, если первым ходом сделает 4, 5, 6. У второго игрока в этом случае все ходы проигрышные.

1-й ход2-й ход
Начало1-й игрок2-й игрок1-й игрок2-й игрок
2,3,44,3,48,3,4выигрыш
4,6,48,6,4выигрыш
4,12,4выигрыш
4,6,8выигрыш
6,8,6выигрыш
4,3,8выигрыш
6,5,612,5,6выигрыш
6,10,6выигрыш
6,5,12выигрыш
8,7,8выигрыш
2,6,44,6,48,6,4выигрыш
4,12,4выигрыш
4,6,8выигрыш
6,8,6выигрыш
2,12,4выигрыш
2,6,8выигрыш
4,8,6выигрыш
2,3,8выигрыш
4,5,68,5,6выигрыш
4,10,6выигрыш
4,5,12выигрыш
6,7,8выигрыш

Пример 5. Записано 7 строк, каждая из которых имеет свой номер. В нулевой строке после номера записана цифра 001. Каждая последующая строка содержит два повторения предыдущей строки и добавленной в конец большой буквы латинского алфавита (первая строка — A, вторая строка — B и т. д.). Ниже приведены первые три строкиєтой записи (в скобках указан номер строки):

Какой символ находится в последней строке на 250-м месте (считая слева направо)?

Примечание. Первые семь букв латинского алфавита: A, B, C, D, E, F, G.

Решение. Найдем длину каждой строки. Длина каждой следующей строки в два раза больше длины предыдущей плюс один символ, длина строк составит:

(6) 127*2+1=255 символов.

Так как задано 7 строк, а нумерация начинается с нулевой строки, последняя строка имеет номер 6 и содержит 255 символов. Последний символ в строке — F. Предпоследний элемент — E, далее идут символы D, C, B, A, 1 (по правилу формирования строк). Таким образом, 250-й символ — это 1.

Пример 6. Имеется фрагмент алгоритма, записанный на учебном алгоритмическом языке:

нц для i от 7 до n – 1

Здесь переменные а, b, с — строкового типа; переменные n, i — целые.

В алгоритме используются следующие функции:

Длина(х) — возвращает количество символов в строке х. Имеет тип «целое».

Извлечь(х, i) — возвращает i-й символ слева в строке х. Имеет строковый тип.

Склеить(х, у) — возвращает строку, в которой находятся все символы строки х, а затем все символы строки у. Имеет строковый тип.

Какое значение примет переменная b после выполнения этого фрагмента алгоритма, если переменная а имела значение «ВОСКРЕСЕНЬЕ»?

Решение. Находим общее число символов в строке а, получим, что n = 11.

Выполняя команду b := Извлечь(а, k) при k = 2, получим, что b примет значение «О«.

В цикле последовательно, начиная с 7-го символа строки а и заканчивая предпоследним (n – 1), извлекаем символ из строки а и присоединяем к строке b.

В результате получим слово «ОСЕНЬ» (символы с номерами 2 + 7 + 8 + 9 + 10).

Пример 7. Леонардо из Пизы, известный как Фибоначчи, был первым из великих математиков Европы позднего Средневековья. Числовой ряд, который называется его именем, получился в результате решения задачи о кроликах, которую Фибоначчи изложил в своей «Книге Абака», написанной в 1202 году. Он выглядит так:

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144.

В этом ряду каждое следующее число, начиная с третьего, равно сумме двух предыдущих. Составить словесный алгоритм и блок-схему проверки принадлежности введенного числа n ряду Фибоначчи.

Решение. Словесный алгоритм:

Приведенный словесный алгоритм в пункте 1, 2 содержит начальные установки, в пункте 3 — цикл с условием, а пункт 4 — это вывод результата работы алгоритма.

какие требования предъявляются к алгоритмам. Смотреть фото какие требования предъявляются к алгоритмам. Смотреть картинку какие требования предъявляются к алгоритмам. Картинка про какие требования предъявляются к алгоритмам. Фото какие требования предъявляются к алгоритмам

F — текущее число ряда Фибоначчи;

F1 и F2 — два предыдущих числа ряда Фибоначчи для числа F;

n — число, для которого требуется определить, является ли оно числом из ряда Фибоначчи.

Использование основных алгоритмических конструкций: следование, ветвление, цикл

Логическая структура любого алгоритма может быть представлена комбинацией трех базовых структур: следование, ветвление, цикл.

Базовая структура СЛЕДОВАНИЕ указывает на то, что управление передается последовательно от одного действия к другому.

Учебный алгоритмический языкЯзык блок-схем
действие 1
действие 2

действие n
какие требования предъявляются к алгоритмам. Смотреть фото какие требования предъявляются к алгоритмам. Смотреть картинку какие требования предъявляются к алгоритмам. Картинка про какие требования предъявляются к алгоритмам. Фото какие требования предъявляются к алгоритмам

Использование исключительно этой структуры возможно лишь для достаточно простых задач, ход решения которых не меняется в зависимости от конкретных исходных данных и состоит в последовательном выполнении определенных операций.

В качестве примера рассмотрим решение простой задачи.

Пример. Найти y(x) = x2 + 3x + 5, используя только операции умножения и сложения.

Решение. На рис. приводятся два алгоритма, реализующие решение поставленной задачи.

Порядок вычисления y(x) в первом случае — обычный, а во втором — (x + 3) x + 5. Обе формулы эквивалентны, но в первом случае для вычисления необходимо 2 умножения, 2 сложения и 3 переменных (x, y, z), а во втором используются 1 умножение, 2 сложения и 2 переменные (x, y).

Приведенный пример показывает, что даже простые задачи могут решаться с помощью различных вариантов алгоритмов.

Обратите внимание, как в блоке следования используется оператор присваивания.

Операция присваивания — важнейшая операция во всех языках программирования. С помощью присваивания переменные получают новые значения: в левой части инструкции ставится идентификатор величины, а в правой части — выражение, значение которого можно определить.

какие требования предъявляются к алгоритмам. Смотреть фото какие требования предъявляются к алгоритмам. Смотреть картинку какие требования предъявляются к алгоритмам. Картинка про какие требования предъявляются к алгоритмам. Фото какие требования предъявляются к алгоритмам

В операторах присваивания используется либо привычный знак равенства, либо сочетание двоеточия и знака равенства «:=». Поскольку знак присваивания — это не знак равенства, возможны записи вида Х := Х + 1 или А := А – В. Нужно учитывать, что оператор присваивания будет выполняться только в том случае, если значения всех переменных правой части уже определены.

Базовая структура ВЕТВЛЕНИЕ (РАЗВИЛКА) используется в случае, когда выполнение программы может измениться в зависимости от результата проверки условия и пойти двумя разными (альтернативными) путями. Другими словами, условие является некоторым высказыванием (предикатом) и может быть истинным или ложным (принимать значение TRUE или FALSE). Каждый из путей ведет к общему выходу, так что работа алгоритма будет продолжаться независимо от того, какой путь будет выбран.

Различают две структуры этого типа — полную и неполную. В случае полной структуры, если условие выполняется (является истинным), вслед за ним выполняется действие 1, иначе — действие 2. В случае неполной структуры, если условие выполняется (является истинным), то вслед за ним выполняется действие 1, иначе ничего не происходит.

Важную роль в операторах ветвления играют содержащиеся в них условия. В простейшем случае условиями служат отношения между величинами. Условия с одним отношением называют простыми условными выражениями, или простыми условиями. В некоторых задачах необходимы более сложные условия, состоящие из нескольких простых, например условие А C) (возможна запись (Х C)). Объединение нескольких простых условий в одно образует составное условное выражение, или составное условие. Составные условия образуются с помощью логических операторов not (отрицание), and (логическое И), or (логическое ИЛИ), хоr (исключающее ИЛИ).

Структура ВЕТВЛЕНИЕ существует в четырех основных вариантах:

если — то (неполная структура);

если — то — иначе (полная структура);

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *