какие углы называются смежными чему равна сумма смежных углов
Углы. Смежные углы.
Какие углы называются смежными?
Смежными углами называется пара углов с общей вершиной и одной
общей стороной. 2 оставшиеся стороны делают продолжение друг
другу, образовывая прямую линию. Для угла 135 градусов смежным
будет угол равный 45 градусам. Для угла x градусов смежным
является угол (180 – x) градусов.
Два смежных угла — это углы, с одной общей стороной, а остальные стороны находятся на одной прямой.
При пересечении 2-х прямых получается 4-ре пары смежных углов:
Но, так как ∠1 =∠4, ∠2 = ∠3 (как вертикальные), то достаточно рассматривать
только одну из этих пар.
Свойство смежных углов.
Чему равна сумма смежных углов?
Смежные углы равны: сумма смежных углов 180º.
Следствия из теоремы о смежных углах.
Тригонометрические соотношения.
противоположные знаки (исключение неопределенные значения).
Задание. Чему будет равна градусная мера угла α, когда градусная мера смежного ему угла = 70°?
Как найти смежный угол?
Решение. Из теоремы о смежных углах находим:
Углы. Смежные углы.
Какие углы называются смежными?
Смежными углами называется пара углов с общей вершиной и одной
общей стороной. 2 оставшиеся стороны делают продолжение друг
другу, образовывая прямую линию. Для угла 135 градусов смежным
будет угол равный 45 градусам. Для угла x градусов смежным
является угол (180 – x) градусов.
Два смежных угла — это углы, с одной общей стороной, а остальные стороны находятся на одной прямой.
При пересечении 2-х прямых получается 4-ре пары смежных углов:
Но, так как ∠1 =∠4, ∠2 = ∠3 (как вертикальные), то достаточно рассматривать
только одну из этих пар.
Свойство смежных углов.
Чему равна сумма смежных углов?
Смежные углы равны: сумма смежных углов 180º.
Следствия из теоремы о смежных углах.
Тригонометрические соотношения.
противоположные знаки (исключение неопределенные значения).
Задание. Чему будет равна градусная мера угла α, когда градусная мера смежного ему угла = 70°?
Как найти смежный угол?
Решение. Из теоремы о смежных углах находим:
Геометрия. 7 класс
Конспект урока
Смежные и вертикальные углы. Аксиомы и теоремы
Перечень вопросов, рассматриваемых в теме:
Два угла, у которых одна сторона общая, а две другие являются продолжениями друг друга, называются смежными.
Свойства смежных углов:
Два угла называются вертикальными, если стороны одного угла являются продолжениями сторон другого.
Свойство вертикальных углов: вертикальные углы равны.
Аксиома– положение, принимаемое без доказательств.
Теоретический материал для самостоятельного изучения
Давайте построим развёрнутый угол АОС и проведём в нём луч ОВ. В результате у нас получилось два угла ∠АОВ – острый угол и ∠ВОС– тупой угол. Стороны АО и ОС – продолжают друг друга, ВО– общая сторона. Углы АОВ и ВОС – это смежные углы. На основании этого сформулируем определение смежных углов.
Два угла, у которых одна сторона общая, а две другие являются продолжениями друг друга, называются смежными.
Давайте докажем это свойство.
Укажем ещё одно свойство смежных углов.
Теперь построим две пересекающиеся прямые, АС и BD. Посмотрите, при пересечении прямых у нас получилось четыре угла: ∠АОВ, ∠АОD, ∠CОD, ∠BОC. Из них попарно являются смежными углы: ∠АОВ и ∠АОD, ∠АОD и ∠CОD, ∠CОD и ∠BОC, ∠АОВ и ∠BОC.
Углы, которые не являются смежными:
∠АОВ и ∠CОD; ∠АОD и ∠BОC. Пары этих углов называются вертикальными углами.
Два угла называются вертикальными, если стороны одного угла являются продолжениями сторон другого.
Свойство вертикальных углов: вертикальные углы равны. Убедимся в справедливости этого свойства, докажем его.
Доказательство. Посмотрим на чертёж: пары углов 1 и 2, 2 и 3, 3 и 4, 4 и 1– смежные углы. Угол 2 одновременно является смежным с углом 1 и с углом 3. По свойству смежных углов
Свойства смежных и вертикальных углов, которые мы сегодня рассмотрели– в геометрии называются теоремами. Правильность утверждения о свойстве той или иной геометрической фигуры устанавливается путём рассуждения. Это рассуждение называется доказательством. А само утверждение, которое доказывается, называется теоремой.
На предыдущих уроках вы познакомились с понятием аксиомы.
В чём же различие между аксиомой и теоремой? Ответ на этот вопрос таков: аксиома – положение, принимаемое без доказательств.
Разбор решения заданий тренировочного модуля
№1. Тип задания: ввод с клавиатуры пропущенных элементов в тексте.
Используя чертёж, найдите угол ∠ВОК.
№2. Тип задания: единичный / множественный выбор.
Используя чертёж, найдите угол ∠AOD.
№3. Тип задания: выделение цветом.
Выделите верный ответ из списка:
60 0 ; 30 0 ; 75 0 ; 90 0
Что такое смежные углы: определение, теорема, свойства
В данной публикации мы рассмотрим, что из себя представляют смежные углы, приведем формулировку теоремы касательно них (в т.ч. следствия из нее), а также перечислим тригонометрические свойства смежных углов.
Определение смежных углов
Два прилежащих угла, внешними сторонами образующие прямую, называется смежными. На рисунке ниже это углы α и β.
Если два угла имеют одну общую вершину и сторону, они являются прилежащими. При этом внутренние области этих углов не должны пересекаться.
Принцип построения смежного угла
Одну из сторон угла протягиваем через вершину дальше, в результате чего образуется новый угол, смежный с исходным.
Теорема о смежных углах
Сумма градусов смежных углов равняется 180°.
Смежн. угол 1 + Смежн. угол 2 = 180°
Пример 1
Один из смежных углов равняется 92°, чему равен второй?
Решение, согласно рассмотренной выше теореме, очевидно:
Смежн. угол 2 = 180° – Смежн. угол 1 = 180° – 92° = 88°.
Следствия из теоремы:
Пример 2
Допустим, у нас есть угол, смежный с 75°. Он должен быть больше 90°. Давайте проверим это.
Воспользовавшись теоремой, находим значение второго угла:
180° – 75° = 105°.
105° > 90°, следовательно угол является тупым.
Тригонометрические свойства смежных углов
Смежные углы
Что такое смежные углы? Какие у них свойства?
Определение.
Смежные углы — это углы, у которых одна сторона — общая, а другие стороны лежат на одной прямой.
∠1 и ∠2 — смежные углы
Сколько смежных углов образуется при пересечении двух прямых?
При пересечении двух прямых образуется четыре пары смежных углов:
Но, так как ∠1 =∠4, ∠2=∠3 (как вертикальные), то достаточно рассмотреть только одну из этих пар.
Свойство смежных углов.
Сумма смежных углов равна 180º.
1) Даны два смежных угла. Один на 42 градуса больше другого. Найти эти углы.
∠AOC и ∠BOC — смежные,
∠AOC на 42º больше, чем ∠BOC
Пусть ∠BOC=хº, тогда ∠AOC= х+42º. Так как сумма смежных углов равна 180º, то ∠BOC+∠AOC=180º.
Значит, ∠BOC= 69º, ∠AOC=69+42=111º.
2) Найти смежные углы, если их градусные меры относятся как 4:5.
Значит, смежные углы равны 4∙20=80º и 5∙20=100º.
3) Один из углов, образованных при пересечении двух прямых, в 5 раз больше другого. Найти эти углы.
Дано: AB и CD — прямые, O — точка их пересечения,
∠AOD в 5 раз больше, чем ∠BOD
При пересечении двух прямых образуются смежные и вертикальные углы. Так как вертикальные углы равны между собой, то углы∠AOD и ∠BOD — смежные. Пусть ∠BOD=xº, тогда ∠AOD=5xº. Так как сумма смежных углов равна 180º, ∠AOD +∠BOD=180º.
Значит, ∠BOD=30º, ∠AOD=5∙30=150º.
Могут ли смежные углы быть равными?
Да. Если смежные углы равны между собой, то, так как сумма смежных углов равна 180º, каждый из них равен половине суммы, то есть 90º.
угол, смежный с прямым, есть прямой угол.
Могут ли два смежных угла быть тупыми? Острыми?
Нет. Так как градусная мера тупого угла больше 90º, то сумма двух тупых углов больше 180º. А сумма смежных углов равна 180º.
Градусная мера острого угла меньше 90º. Значит, сумма двух острых углов меньше 180º.
Таким образом, в паре смежных углов один — тупой, другой — острый (или оба прямые).