какие условия необходимы для предотвращения горения
Что делать, чтобы не произошел пожар
Именно об этом, и о других требованиях правил пожарной безопасности личный состав государственного пожарного надзора ГУ МЧС России по Калужской области ежедневно доводят до жителей региона.
Итак, что делать, чтобы не произошел пожар:
В первую очередь, соблюдать требования пожарной безопасности при использовании открытого огня. Всегда соблюдать правила эксплуатации электроприборов, описанных в инструкции к ним. Следить за их исправностью. Минимальное повреждение изоляции провода исправляется изолентой. При более серьёзном прибор лучше заменить на новый.
Нельзя накрывать люстры, настольные лампы и обогреватели тканью или бумагой. От перегрева они легко могут загореться.
Следить за состоянием электропроводки. Не должно быть повреждения электропроводов: небрежного соединения, коррозии, загрязнения предохранителей, оголения или плохой изоляции.
Не хранить хлам, который может загореться на балконе, лоджии, чердаке, в подвале.
Уходя из жилого дома или квартиры, перекройте подачу газа. Плотно закройте все двери: от сквозняка огонь при пожаре быстрее распространяется. Убедитесь, что нет источников огня: незатушенные окурки, свечи, ароматические палочки, включённые электроприборы, особенно обогреватели, горящие угли в печи и т.д.
Бензин, ацетон, спирт, краски и другие горючие вещества нужно хранить подальше от всего, что может перегреться, загореться или дать искру.
По возможности, научитесь пользоваться средствами тушения в доме: огнетушителем и другими. Кроме огнетушителей в помещениях используют: воду, песок, намоченную плотную ткань. Песок перекрывает доступ необходимого для горения кислорода. С этой же целью на источник небольшого возгорания набрасывают одеяло или намоченную ткань.
Легковоспламеняющиеся жидкости, например, бензин, ацетон, краски и др. в помещении тушат с помощью воздушнопенного огнетушителя или мокрой плотной ткани.
Какие условия необходимы для предотвращения горения
О самовозгорании растительных продуктов. Из растительных продуктов склонны к самовозгоранию сено, солома, листья, солод, хмель. Особенно подвержены самовозгоранию недосушенные растительные продукты, в которых продолжается жизнедеятельность растительных клеток.
Согласно бактериальной теории, наличие влаги и повышение температуры за счет жизнедеятельности растительных клеток способствует размножению имеющихся в растительных продуктах микроорганизмов. Вследствие плохой теплопроводности растительных продуктов выделяющаяся теплота постепенно накапливается и температура в массе продукта повышается. При повышенной температуре микроорганизмы погибают и превращаются в пористый уголь, который обладает свойством нагреваться за счет интенсивного окисления и поэтому является следующим, после микроорганизмов, источником выделения тепла. Температура в растительных продуктах поднимается до 300°С, и они самовозгораются.
Древесный, бурый и каменный уголь, торф самовозгораются также за счет интенсивного окисления кислородом воздуха.
Растительные и животные жиры, если они нанесены на измельченные или волокнистые материалы (тряпки, веревки, пакля, рогожа, шерсть, опилки, сажа и др.) обладают способностью самовозгораться.
При смачивании измельченных или волокнистых материалов маслом, оно распределяется по поверхности и при соприкосновении с воздухом, начинает окисляться. Одновременно с окислением в масле происходит процесс полимеризации (соединения нескольких молекул в одну). Как первый, так и второй процессы сопровождаются значительным выделением тепла. Если выделяемое тепло не рассеивается, т.е. накапливается внутри плотно уложенной кипы, то температура в промасленном материале поднимается, и может достигнуть температуры самовоспламенения.
Горение возникает при наличии трех обязательных составляющих: горючего вещества, окислителя и источника зажигания. Остановимся на каждом из них подробнее.
Под термином горючее вещество подразумевается такое вещество, которое способно самостоятельно гореть после того, как будет удален внешний источник зажигания. Горючее вещество может находиться в твердом, жидком или газообразном состоянии. Горючими веществами являются большинство органических веществ, ряд газообразных неорганических соединений и веществ, многие металлы и т.д. Наибольшую взрывопожарную опасность представляют газы.
Существует ряд веществ (газообразных, жидких или в твердом состоянии), которые способны самовоспламеняться при контакте с воздухом без предварительного нагрева (при комнатной температуре), такие вещества называют пирофорными. К ним относятся: фтористый водород, белый фосфор, гидриды и металлоорганические соединения легких металлов и т.д.
Есть достаточно большая группа веществ, при контакте которых с водой или водяными парами, находящимися в воздухе, начинается химическая реакция, протекающая с выделением большого количества теплоты. Под действием выделяющейся теплоты происходит самовоспламенение горючих продуктов реакции и исходных веществ. К этой группе веществ относятся щелочные и щелочноземельные металлы (литий, натрий, калий, кальций, стронций, уран и др.), гидриды, карбиды, фосфиды указанных металлов, низкомолекулярные металлоорганические соединения (триэтилалюминий, триизобутилалюминий, триэтилбор) и т.д.
Горение твердого вещества происходит по более сложному механизму и ему присуще несколько стадий. При воздействии внешнего источника происходит прогрев поверхностного слоя твердого вещества, из него начинается выделение газообразных летучих продуктов. Этот процесс может сопровождаться или плавлением поверхностного слоя твердого вещества, или его возгонкой (образованием газов, минуя стадию плавления). При достижении определенной концентрации горючих газов в воздухе (нижнего концентрационного предела), они воспламеняются и посредством выделяющейся теплоты начинают сами воздействовать на поверхностный слой, вызывая его плавление и поступление в зону горения новых порций горючих газов и паров твердого вещества.
Если горючее вещество плавится растекаясь, оно увеличивает очаг горения (например, каучук, резина, металлы и т.д.). В том случае, если вещество не плавится, кислород постепенно подходит к поверхности горючего и процесс приобретает форму гетерогенного горения (стадия выжигания кокса углеродного горючего). Процесс горения твердых веществ сложен и многообразен, он зависит от многих факторов (дисперсность твердого материала, его влажность, наличие пленки окислов на его поверхности и ее прочность, присутствие примесей и т.д.).
Способы прекращения горения
Пожар принято рассматривать, как термодинамическую структуру открытого типа. В ней происходят процессы трех видов: горение, теплообмен и газообмен. Система обменивается с окружающим пространством энергией и средами. Процесс горения и условия его возникновения складывается из трех аспектов:
Соответственно условия прекращения горения – это купирование одного или нескольких факторов пожара.
Особенности и последовательность возникновения возгорания
Основы прекращения горения базируются на понимании пожара, как совокупности реакций, сопровождающихся выделением света, посредством образования пламени, и тепла. Пожар зарождается и распространяется не мгновенно, а постепенно:
Факторы распространения пожара
Распространение пожара может осуществляться 2-мя способами:
Конфигурация пожара может быть самой замысловатой. Форма зависит от направления распространения пожара и скорости. Это может быть круговая, эллипсоидальная, угловая или иная система.
Кроме этого, в зданиях и сооружениях огонь может распространяться по поверхностям конструкций, по предметам интерьера и продукции, внутри перегородок и перекрытий здания, по проемам и карнизам, а так же по коммуникациям, где транспортируются горючие среды.
Комплекс необходимых мер пожаротушения
Способов прекращения или снижения эффективности горения несколько, каждый из них предполагает устранение одного из провоцирующих факторов:
Классификация огнетушащих средств
Основы прекращения горения на пожаре под огнетушащими веществами понимает те составы и средства, которые способны воздействовать на химическую реакцию интенсивного окисления и прекращать пожар. Их классифицируют по доминирующему принципу действия:
Важно! Как видно из вышеизложенного, к какому бы виду не относилось огнетушащее вещество, поступая в очаг возгорания, они действуют не избирательно, а комплексно. Например, вода не только охлаждает, но и изолирует, и разбавляет.
Использование мобильных и стационарных средств
Существуют основные способы прекращения горения и дополнительные. Какие методы нужно применить, сколько и в каких объемах зависит от особенностей объекта, например одноэтажный дом или многоэтажное сооружение, типа горючих материалов и масштабов возгорания. Методические рекомендации разработаны различными нормативными актами и законодательными нормами. Основные положения начинают преподавать уже в школе, на занятиях БЖД. Важно не только правильно выбрать огнетушащие вещества, но и использовать адекватные средства пожаротушения. Они должны быть предусмотрены на всех объектах, особенно на взрывоопасных производствах и площадка, где материалы склонны к самовозгоранию. Перечень средств классифицируется на такие группы:
Принципиально все средства пожаротушения подразделяются на два типа:
Лафетные установки для пожаротушения
Прекращение горения на пожаре эффективно реализуется с помощью лафетных установок. Это стационарные средства. Они проектируются уже на стадии разработки самого объекта. Лафетные установки высокоэффективны, но максимально требовательны к обеспечению коммуникациями. Проектируют системы, исходя из специфики объекта, материалов и огнетушащих веществ, которые планируется использовать. Есть установки общего назначения, существует оборудование специального назначения, например, для защиты коммуникаций посредством орошения водой.
Тема 5. Основы прекращения горения на пожаре. Огнетушащие вещества
Рассмотрим процессы, протекающие на пожаре, и параметры, их характеризующие.
Процесс горения на пожаре горючих веществ и материалов представляет собой быстро протекающие химические реакции окисления и физические явления, без которых горение невозможно, сопровождающиеся выделением тепла и свечением раскаленных продуктов горения с образованием ламинарного или турбулентного диффузионного пламени.
Основными условиями горения являются (классический треугольник горения):
наличие горючего вещества;
поступление окислителя в зону химических реакций;
непрерывное выделение тепла, необходимого для поддержания горения.
Возникновение и распространение процесса горения по веществам и материалам происходит не сразу, а постепенно. Источник горения воздействует на горючее вещество, вызывает его нагревание, при этом в большей мере нагревается поверхностный слой, происходит активация поверхности, деструкция и испарение вещества, материала вследствие термических и физических процессов, образование аэрозольных смесей, состоящих из газообразных продуктов реакции и твердых частиц исходного вещества. Образовавшиеся газообразные продукты способны к дальнейшему экзотермическому превращению, а развитая поверхность прогретых твердых частиц горючего материала способствует интенсивности процесса его разложения.
Концентрация паров, газообразных продуктов деструкции испарения (для жидкостей) достигает критических значений, происходит воспламенение газообразных продуктов и твердых частиц вещества, материала. Горение этих продуктов приводит к выделению тепла, повышению температуры поверхности и увеличению концентрации горючих продуктов термического разложения станет не меньше скорости их окисления в зоне химической реакции горения. Тогда под воздействием тепла, выделяющегося в зоне горения, происходит разогрев, деструкция, испарение и воспламенение следующих участков горючих веществ и материалов.
Способы прекращения горения | Приемы прекращения горения |
Охлаждение зоны реакции или горящих веществ | 1. Охлаждение горящих материалов нанесением на их поверхность огнетушащих веществ (воды, твердой углекислоты, растворов жидкостей). 2. Охлаждение горючих материалов их перемешиванием. 3. Разборка горящих материалов с последующим охлаждением их огнетушащими веществами. |
Разбавление реагирующих веществ в зоне реакции негорючими веществами | 1. Разбавление воздуха введением в него негорючих паров и газов (углекислый газ, азот, водяной пар, тонкораспыленная вода, отработанные газы двигателей). 2. Разбавление горящих материалов нанесением на их поверхность легкоиспаряющихся или разлагающихся негорючих материалов (тонкораспыленная вода, углекислота). |
Изолирование реагирующих веществ от зоны горения | 1. Создание изолирующего слоя в горючих материалах нанесением на их поверхность огнетушащих веществ (пена, войлок, песок, земля, флюсы) 2. Создание изолирующего слоя в горючих материалах при помощи взрыва ВВ. 3. Создание изолирующего слоя в проемах помещений, где происходит пожар (водяные завесы перемычки). 4. Создание изолирующего слоя в горючих материалах разборкой, сжиганием, опашкой их. 6. Создание условий огнепреграждения. |
Химическое торможение реакции горения | 1. Подача ингибитов на поверхность горящих материалов (фреоны, порошки) 2. Введение ингибиторов в воздух поступающий в зону горения (тонко распыленная эмульсия бромэтиловых составов) |
Классификация огнетушащих веществ, способов и приемов прекращения горения
Под огнетушащими веществами в пожарной тактике понимаются такие вещества, которые непосредственно воздействуют на процесс горения и создают условия для его прекращения (вода, пена, порошки и др.).
По основному (доминирующему) признаку прекращения горения тушащие вещества подразделяются на:
• охлаждающего действия (вода, твердый диоксид углерода и др.);
• разбавляющего действия (негорючие газы, водяной пар, тонкораспыленная вода и т.п.);
• изолирующего действия (воздушно-механическая пена различной кратности, сыпучие негорючие материалы и пр.);
• ингибирующего действия (галоидированные углеводороды: бромистый метилен, бромистый этил, тетрафтордибромэтан, огнетушащие составы на их основе и др.).
Однако следует отметить, что все огнетушащие вещества, поступая в зону горения, прекращают горение комплексно, а не избирательно, т.е. вода, являясь огнетушащим веществом охлаждения, попадая на поверхность горящего материала, частично будет действовать как вещество разбавляющего и изолирующего действия.
Охлаждающие огнетушащие вещества. Для охлаждения горящих материалов применяются жидкости, обладающие теплоемкостью. Для большинства горючих материалов применяется вода.
Попадая в зону горения, вода отнимает от горящих материалов и продуктов горения большое количество тепла. При этом она частично испаряется и превращается в пар, увеличиваясь в объеме в 1700 раз (из 1 л воды при испарении образуется 1700 л пара), благодаря чему происходит разбавление реагирующих веществ, что само по себе способствует прекращению горения, а также вытеснению воздуха из зоны пожара.
Вода обладает высокой термической стойкостью. Ее пары только при температуре свыше 1700 °С могут разлагаться на кислород и водород, усложняя тем самым обстановку в зоне горения. Большинство же горючих материалов горит при температуре, не превышающей 1300 – 1500 °С и тушение их водой не опасно. Однако металлические магний, цинк, алюминий, титан и его сплавы, при горении создают в зоне горения температуру, превышающую термическую стойкость воды. Тушение их водой недопустимо.
Вода имеет низкую теплопроводность, что способствует созданию на поверхности горящего материала надежной тепловой изоляции. Это свойство в сочетании с предыдущими позволяет использовать ее не только для тушения, но и для защиты материалов от воспламенения.
Малая вязкость и несжимаемость воды позволяет подавать ее по рукавам на значительные расстояния и под большим давлением.
Пары воды способны растворять некоторые горючие пары, газы и поглощать аэрозоли. Распыленной водой можно осаждать продукты горения на пожарах в зданиях. Для этих целей применяют распыленные и тонкораспыленные струи.
Некоторые горючие жидкости (жидкие спирты, альдегиды, органические кислоты и др.) растворимы в воде, поэтому, смешиваясь с водой, они образуют негорючие или менее горючие растворы.
Наряду с этим у воды имеются и отрицательные свойства. Основной недостаток у воды как огнетушащего вещества заключается в том, что из-за высокого поверхностного натяжения (72,8 10-3 Дж/м2) она плохо смачивает твердые материалы и особенно волокнистые вещества.
Применение растворов смачиваетелей позволяет уменьшить расход воды при тушении пожаров на 35-50%; снизить время тушения на 20-30%, что обеспечивает тушение одним и тем же объемом огнетушащего вещества на большой площади.
В практике пожаротушения для этих целей широкое применение нашли:
жидкие огнетушащие вещества (пена, в некоторых случаях вода и пр.);
газообразные огнетушащие вещества (продукты взрыва и т.д.);
негорючие сыпучие материалы (песок, тальк, флюсы, огнетушащие порошки и т.д.);
твердые тканевые материалы (асбестовые, войлочные покрывала и другие негорючие ткани, в некоторых случаях листовое железо).
Разбавляющие огнетушащие вещества. Для прекращения горения разбавлением реагирующих веществ, применяются такие огнетушащие средства, которые способны разбавить либо горючие пары и газы до негорючих концентраций, либо снизить содержание кислорода воздуха до концентрации, не поддерживающей горения.
Приемы прекращения горения заключаются в том, что огнетушащие средства подаются либо в зону горения или в горящее вещество, либо в воздух, поступающий в зоне горения.
Практика показывает, что в качестве разбавляющих огнетушащих средств наибольшее распространение нашли диоксид углерода (углекислый газ), азот, водяной пар и распыленная вода. В гарнизонах, имеющих на вооружении автомобили газоводяного тушения (АГВТ), для целей разбавления концентрации кислорода воздуха, поступающего к зоне горения, возможной использование газоводяной смеси.
При определенной концентрации разбавляющих огнетушащих веществ в воздухе помещения температура горения снижается и становится меньше, чем температура потухания, горение прекращается.
Практика и опыт тушения пожаров показывают, что пламенное горение большинства горючих материалов прекращается при снижении концентрации кислорода в воздухе помещения до 14 – 16 %.
Углекислый газ применяется для тушения пожаров электрооборудования электроустановок, в библиотеках, книгохранилищах и архивах и т.п. Однако им категорически запрещено тушение щелочных и щелочноземельных металлов.
Азот, главным образом, применяется в стационарных установках пожаротушения для тушения натрия, калия, бериллия и кальция. Для тушения магния, лития, алюминия, циркония применяют аргон, а не азот. Диоксид углерода и азот хорошо тушат вещества, горящие пламенем (жидкости и газы), плохо тушат вещества и материалы, способные тлеть (древесина, бумага).
К недостаткам диоксида углерода и азота как огнетушащих веществ следует отнести их высокие огнетушащие концентрации и отсутствие охлаждающего эффекта при тушении.
Водяной пар нашел широкое применение в стационарных установках тушения в помещениях с ограниченным количеством проемов, объемом до 500 м3 (сушильные и окрасочные камеры, трюмы судов, насосные по перекачке нефтепродуктов и т.п.), на технологических установках для наружного пожаротушения, на объектах химической и нефтеперерабатывающей промышленности.
Попадая в зону горения, тонкораспыленная вода интенсивно испаряется, снижая концентрацию кислорода и разбавляя горючие пары и газы, участвующие в горении. Об эффективности применения тонкораспыленной воды для целей пожаротушения свидетельствуют опыты, проведенные на морских судах, где установлено, что после четырехминутной работы одного ствола высокого давления температура в помещениях кают снижалась с 700 до 100°С, содержание аэрозоля в дыму уменьшалось в 3 раза, увеличивалась освещенность предметов источником света, резко снижалось содержание оксида углерода за счет поглощения водой.
Огнетушащие вещества химического торможения. Сущность прекращения горения химическим торможением реакции горения заключается в том, что в воздух горящего помещения или непосредственно в зону горения вводятся такие огнетушащие вещества, которые вступают во взаимодействие с активными центрами реакции окисления, образуя с ними либо негорючие, либо менее активные соединения, обрывая тем самым цепную реакцию горения. Поскольку эти вещества оказывают воздействие непосредственно на зону реакции, в которой реагирующие вещества находятся в паровоздушной фазе, они должны отвечать следующим специфическим требованиям:
• иметь низкую температуру кипения, чтобы при малых температурах разлагаться, легко переходить в парообразное состояние;
• иметь низкую термическую стойкость, т.е. при малых температурах разлагаться на составляющие их атомы и радикалы;
• продукты термического распада огнетушащих веществ должны активно вступать в реакцию с активными центрами.
Этим требованиям отвечают галоидированные углеводороды — особо активные вещества, оказывающие ингибирующее действие, т.е. тормозящие химическую реакцию горения. Однако в отношении этих веществ следует напомнить общие требования к огнетушащим веществам и особенно на такое, как токсичность. Наиболее широкое применение нашли составы на основе брома и фтора. Галоидированные углеводороды и огнетушащие составы на их основе имеют высокую огнетушащую способность при сравнительно небольших расходах.
Прекращение горения на пожарах
В данной статье рассматриваются вопросы, связанные с прекращением горения, ограничением интенсивности его развития и распространения наиболее простыми и эффективными средствами.
Большое внимание заслуживают параметры и условия, за границами которых горение не может протекать.
Прежде всего, сюда следует отнести: концентрационные пределы распространения пламени, температурные пределы распространения пламени и ряд других параметров, которые являются производными от этих пределов.
Процессы горения не могут протекать вне значений указанных параметров, т.е. процессы горения либо не возникают, а если они существовали, то прекратятся.
Эти параметры представляют интерес для пожарной тактики в связи с тем, что возникает возможность оказывать влияние на эти величины и, изменяя тем или иным образом условия, можно добиться прекращения горения.
На основе этих параметров можно сформулировать основные направления и способы прекращения горения: снижение скорости тепловыделения или увеличение скорости теплоотвода от зоны горения.
Основой является снижение температуры зоны горения до значений ниже температуры потухания. Достигнуть этого можно на основе четырех известных принципов прекращения горения:
Для этих целей применяются различные огнетушащие вещества.
Классификация огнетушащих веществ, способов и приемов прекращения горения
Под огнетушащими веществами в пожарной тактике понимаются такие вещества, которые непосредственно воздействуют на процесс горения и создают условия для его прекращения (вода, пена, порошки и др.).
Огнетушащих веществ в природе много. Кроме того, современная технология позволяет получать такие огнетушащие вещества, которых нет в природе. Однако не все огнетушащие вещества принимаются на вооружение пожарных подразделений, а лишь те, которые отвечают определенным требованиям. Они должны:
По основному (доминирующему) признаку прекращения горения огнетушащие вещества подразделяются на:
Однако следует отметить, что все огнетушащие вещества, поступая в зону горения, прекращают горение комплексно, а не избирательно, т.е. вода, являясь огнетушащим веществом охлаждения, попадая на поверхность горящего материала, частично будет действовать как вещество разбавляющего и изолирующего действия. Более подробно механизм прекращения горения водой и другими огнетушащими веществами будут рассмотрены ниже.
Вид и характер выполнения боевых действий в определенной последовательности, направленных на создание условий прекращения горения, называется способом прекращения горения.
В зависимости от основного процесса, приводящего к прекращению горения, способы тушения можно разделять на четыре группы (рис. 1):
Способы прекращения горения, основанные на принципе охлаждения реагирующих веществ или горящих материалов, заключаются в воздействии на них охлаждающими огнетушащими веществами; основанные на изоляции реагирующих веществ от зоны горения — в создании между зоной горения и горючим материалом или окислителем изолирующего слоя из огнетушащих материалов и веществ; основанные на разбавлении реагирующих веществ или химическом торможении реакции горения — в создании в зоне горения или вокруг нее негорючей газовой или паровой среды.
Подведем некоторые итоги вышесказанного, оформив их в виде схемы (рис. 2).
Каждый из способов прекращения горения можно выполнить различными приемами или их сочетанием. Например, создание изолирующего слоя на горящей поверхности легковоспламеняющейся жидкости может быть достигнуто подачей пены через слой горючего, с помощью пеноподьемников, навесными струями и т.п.
Приемы тушения — это те составные части способа прекращения горения, которые могут изменяться в процессе действий пожарных подразделений при изменении обстановки на пожаре, могут изменяться и способы. Применение того или иного способа и приема прекращения горения, огнетушащего вещества зависит от:
Все это направлено на наименьшие убытки и затраты.
Механизм прекращения горения
Охлаждающие огнетушащие вещества
Для охлаждения горящих материалов применяются жидкости, обладающие теплоемкостью. Для большинства горючих материалов применяется вода.
Попадая в зону горения, вода отнимает от горящих материалов и продуктов горения большое количество тепла. При этом она частично испаряется и превращается в пар, увеличиваясь в объеме в 1700 раз (из 1 л воды при испарении образуется 1700 л пара), благодаря чему происходит разбавление реагирующих веществ, что само по себе способствует прекращению горения, а также вытеснению воздуха из зоны пожара.
Вода обладает высокой термической стойкостью. Ее пары только при температуре свыше 1700°С могут разлагаться на кислород и водород, усложняя тем самым обстановку в зоне горения. Большинство же горючих материалов горит при температуре, не превышающей 1300-1500°С и тушение их водой не опасно. Однако металлические магний, цинк, алюминий, титан и его сплавы, при горении создают в зоне горения температуру, превышающую термическую стойкость воды. Тушение их водой недопустимо.
Вода имеет низкую теплопроводность, что способствует созданию на поверхности горящего материала надежной тепловой изоляции. Это свойство в сочетании с предыдущими позволяет использовать ее не только для тушения, но и для защиты материалов от воспламенения.
Малая вязкость и несжимаемость воды позволяет подавать ее по рукавам на значительные расстояния и под большим давлением.
Пары воды способны растворять некоторые горючие пары, газы и поглощать аэрозоли. Распыленной водой можно осаждать продукты горения на пожарах в зданиях. Для этих целей применяют распыленные и тонкораспыленные струи.
Некоторые горючие жидкости (жидкие спирты, альдегиды, органические кислоты и др.) растворимы в воде, поэтому, смешиваясь с водой, они образуют негорючие или менее горючие растворы.
Для устранения этого недостатка к воде добавляют поверхностно-активные вещества (ПАВ), или, как их еще называют — смачиватели. На практике используют растворы ПАВ, поверхностное натяжение которых в 2 раза меньше, чем у воды.
Применение растворов смачиваетелей позволяет уменьшить расход воды при тушении пожаров на 35-50%; снизить время тушения на 20-30%, что обеспечивает тушение одним и тем же объемом огнетушащего вещества на большой площади. Рекомендуемые концентрации смачивателей, %, в водных растворах для тушения пожаров приведены ниже:
Смачиватель ДБ | 0,2 |
Сульфонат | 0,4 |
Сульфанол НП-1 | 0,4 |
Синтанол Д-ЗС | 0,5 |
Первичные апкилсульфаты С—С | 0,6 |
Рафинированный алкнлкрнлсульфонат (РАС) | 2 |
Эмульгатор ОП-4 | 2 |
ОП-6 | 4 |
ОП-20 | 4 |
Сульфанол НП-3 | 0,6 |
Смачиватель НБ | 0,75 |
Сульфанол хлорный | 1 |
Вторичные апкилсульфаты (очищенные) | 1,5 |
Пенообразователи ПО-1Д | 5,0 |
Нейтрализованный черный контакт (НЧК) | 5 |
Вода с абсолютным большинством горючих веществ не вступает в химическую реакцию. Исключение составляют щелочные и щелочно-земельные металлы, при взаимодействии которых с водой выделяется водород. Их тушить водой нельзя.
Выше отмечалось, что вода имеет малую вязкость. В силу этого значительная часть ее утекает с места пожара, не оказывая существенного влияния на процесс прекращения горения. Если увеличить вязкость воды до 2,5×10-3 м/с, то значительно снизится время тушения и коэффициент ее использования повысится более чем в 1,8 раза. Для этих целей применяют добавки из органических соединений, например, КМЦ (карбоксиметилцеллюлоза).
Огнетушащая эффективность воды зависит от способа подачи ее в очаг пожара (сплошной или распыленной струей). Механизм прекращения горения и эффективность применения сплошных струй рассмотрим на примере тушения древесины. На (рис. 3) схематично показаны процесс горения и эпюра распределения температур в древесине. Под воздействием тепла, выделяющегося в зоне реакции, на поверхности материала образуется слой угля, температура которого около 600-700°С, что значительно превышает температуру начала пиролиза древесины, равную около 200°С.
На рис. 4, а и б схематично показаны воздействия на горящую древесину сплошной (компактной) и распыленной водяных струй.
Поданная вода при этом:
Но к прекращению горения приводит охлаждающее свойство воды как доминирующее. Изоляция и разбавление лишь способствуют прекращению горения.
Поданная вода на тушение горящей древесины быстро снижает температуру в верхнем слое угля, и горение на этом участке прекращается. Быстро — потому, что значительная разность температуры у угля и воды; в тонком слое — из-за небольшой теплопроводности угля и кратковременного контакта его с водой. Вот почему при переносе струи воды в другое место верхний слой угля быстро высыхает, продолжается разложение древесины и горение возникает вновь.
Твердый диоксид углерода прекращает горение всех горючих веществ, за исключением металлического натрия и калия, магния и его сплавов. Он не электропроводен и не смачивает горючие вещества. Поэтому применяется для тушения электроустановок под напряжением, двигателей, а также при пожарах в архивах, музеях, библиотеках, на выставках и т.д. При тушении он подается на поверхность горящих веществ равномерным слоем.
Несмотря на то, что плотность твердой углекислоты больше, чем воды, вследствие непрерывного перехода в газ и создания своеобразной газовой подушки, она не тонет в горящей жидкости и находится на ее поверхности. Верхний слой горящего вещества при этом охлаждается, и количество горючих паров и газов в зоне горения уменьшается. Возгонка (кипение) твердой углекислоты в газ и испарение горючего вещества происходят на одной поверхности. Поэтому в зону горения поступает смесь горючих паров с диоксидом углерода, что приводит к снижению скорости реакции и температуры горения ниже температуры потухания, а значит и к ликвидации пожара.
Из вышесказанного следует вывод, что механизм прекращения горения твердым диоксидом углерода заключается в охлаждении горящих материалов и разбавлении их паровой фазы или продуктов разложения диоксидом углерода одновременно. Однако в прекращении горения большее влияние оказывает процесс охлаждения. Действительно, горение не прекращается сразу после подачи слоя твердой углекислоты на поверхность горящего материала, т.е. когда объем образующегося диоксида углерода максимальный. Горение прекращается именно после снижения температуры горящего материала, снижения скорости испарения и термического разложения.
Наиболее быстро твердая углекислота охлаждает жидкие горючие вещества, так как они своей текучестью компенсируют недостаток ее удельной поверхности соприкосновения. Значительно медленнее происходит охлаждение (прекращение горения) горящих твердых веществ (древесины, резины и т.п.), и оно вообще не наступает у волокнистых веществ и материалов (хлопок, шерсть, торф).
Снизить температуру горящего слоя горючих веществ и тем самым прекратить горение можно перемешиванием самих горящих веществ.
Всем известен прием прекращения самонагревания сырого зерна на току перелопачиванием. Это не что иное, как прекращение горения за счет дробления очага пожара, увеличения его поверхности теплообмена, т.е. за счет охлаждения.
Путем перемешивания можно прекратить горение и горючих жидкостей. Очевидно, что в процессе горения жидкости прогреваются в глубину. Первоначально толщина прогретого слоя не превышает нескольких сантиметров, и нижние слои горячей жидкости в резервуаре имеют первоначальную температуру, т.е. температуру хранения. Если перемешать жидкость, то можно охладить верхний ее слой и тем самым снизить скорость горения (рис. 5). При определенных условиях степень охлаждения может оказаться такой, что температура верхнего слоя жидкости снизится ниже температуры воспламенения, и горение прекратится. Опытами и практикой доказано, что такое явление может наступить в случае, когда температура вспышки горючей жидкости не менее чем на 5°С выше температуры хранения ее в данных условиях. Например, при температуре воздуха 30°С можно прекратить горение перемешиванием жидкости в резервуаре е температурой вспышки 35°С и более.
Но при этом должно быть выполнено дополнительное условие — интенсивное охлаждение стенок горящего резервуара.
Изолирующие огнетушащие вещества
Создание между зоной горения и горючим материалом или воздухом изолирующего слоя из огнетушащих веществ и материалов — распространенный способ тушения пожаров, применяемый пожарными подразделениями. При его реализации применяются самые разнообразные огнетушащие средства, способные на некоторое время изолировать доступ в зону горения либо кислорода воздуха, либо горючих паров и газов.
В практике пожаротушения для этих целей широкое применение нашли:
Основным средством изоляции являются огнетушащие пены: химическая и воздушно-механическая.
Некоторые свойства химической пены: плотность 0,15-0,25 г/м 3 ; кратность примерно равна 5. Трудоемкость получения химической пены и достаточно высокие материальные затраты, вредное воздействие на органы дыхания личного состава пеногенераторного порошка в процессе введения его в воду и другие недостатки ограничивают ее практическое применение.
Воздушно-механическая пена (ВМП) получается в результате механического перемешивания водного раствора пенообразователя с воздухом в специальном стволе или генераторе. Различают ВМП низкой, средней и высокой кратности. Кратность ВМП зависит от конструкции ствола (генератора), с помощью которого она получается.
Основное огнетушащее свойство пен — изолирующая способность. Пена изолирует зону горения от горючих паров и газов, а также горящую поверхность горючего материала от тепла, излучаемого зоной реакции. На рис. 6 можно наглядно все это представить. Прежде чем накопится на горящей поверхности достаточным слоем, изолирующим выход горючих паров и газов в зону горения, пена под действием тепла разрушается и охлаждает вещество. При этом жидкость, из которой получена пена, испаряется, разбавляя горючие пары и газы, поступающие в зону горения и т.д. Все это способствует прекращению горения, хотя изоляция — доминирующее свойство, которое приводит именно к потуханию.
Другое свойство пены, представляющее интерес для работников пожарной охраны —- стойкость, т.с. способность какое-то время сохраняться, не разрушаясь. Ведь именно от этого свойства зависит нормативное время тушения пенами тех или иных горючих веществ и материалов.
Специфические свойства воздушно-механической пены (ВПМ) средней и высокой кратности приводятся ниже:
На основании этих свойств данные виды пены (особенно средней кратности) нашли применение при объемном тушении в помещениях зданий, трюмах судов, в кабельных тоннелях и на других объектах. Пена средней кратности является основным средством тушения ЛВЖ и ГЖ как в резервуарах, так и разлитых на открытой поверхности. Однако отсутствие видимости при работе с пеной затрудняет ориентацию в помещении. Принимая во внимание хорошую смачивающую способность пены, начальствующий состав должен принимать меры для переодевания личного состава в сухую одежду после работы в пене. Этот факт приобретает особую значимость при ликвидации пожаров в осенне-зимний и весенний периоды.
В настоящее время для тушения различных горючих веществ все более широкое применение находят огнетушащие порошковые составы. Они не токсичны, не оказывают вредного воздействия на материалы, не электропроводны и не замерзают.
Механизм прекращения горения порошками заключается в основном в изоляции горящей поверхности от зоны горения, т.е. в прекращении доступа горючих паров и газов в зону реакции. Основным критерием прекращения горения порошковым составом является удельный расход.
В случае объемного тушения — механизм прекращения горения заключается в химическом торможении реакции горения, т.е. ингибирующем воздействии порошков, связанном с обрывом цепной реакции горения.
Разбавляющие огнетушащие вещества
Для прекращения горения разбавлением реагирующих веществ применяются такие огнетушащие средства, которые способны разбавить либо горючие пары и газы до негорючих концентраций, либо снизить содержание кислорода воздуха до концентрации, не поддерживающей горения.
Приемы прекращения горения заключаются в том, что огнетушащие средства подаются либо в зону горения или в горящее вещество, либо в воздух, поступающий в зоне горения. Наибольшее распространение они нашли в стационарных установках пожаротушения для относительно замкнутых помещений (трюмы судов, сушильные камеры на промпредприятиях и т.д.), а также для тушения горючих жидкостей, пролитых на земле на небольшой площади. Кроме того, разбавление спиртов до 70% водой — необходимое условие для успешного тушения их в резервуарах воздушно-механической пеной.
Практика показывает, что в качестве разбавляющих огнетушащих средств наибольшее распространение нашли диоксид углерода (углекислый газ), азот, водяной пар и распыленная вода. В гарнизонах, имеющих на вооружении автомобили газоводяного тушения (АГВТ), для целей разбавления концентрации кислорода воздуха, поступающего к зоне горения, возможной использование газоводяной смеси.
Механизм прекращения горения при введении разбавляющих огнетушащих веществ в помещение, в котором происходит пожар, заключается в понижении объемной доли кислорода. При введении разбавляющих веществ в помещении повышается давление, происходит вытеснение воздуха и вместе с ним кислорода, увеличивается концентрация негорючих и не поддерживающих горение газов, парциальное давление кислорода падает.
Все это приводит к снижению скорости диффузии кислорода к зоне горения, уменьшается количество вступающих в реакцию горючих паров и газов, снижается количество выделяющегося тепла в зоне реакции. При определенной концентрации разбавляющих огнетушащих веществ в воздухе помещения температура горения снижается и становится меньше, чем температура потухания, и горение прекращается.
Практика и опыт тушения пожаров показывают, что пламенное горение большинства горючих материалов прекращается при снижении концентрации кислорода в воздухе помещения до 14-16%.
Углекислый газ применяется для тушения пожаров электрооборудования и электроустановок, в библиотеках, книгохранилищах и архивах и т.п. Однако им категорически запрещено тушение щелочных и щелочноземельных металлов.
Азот, главным образом, применяется в стационарных установках пожаротушения для тушения натрия, калия, бериллия и кальция. Для тушения магния, лития, алюминия, циркония применяют аргон, а не азот. Диоксид углерода и азот хорошо тушат вещества, горящие пламенем (жидкости и газы), плохо тушат вещества и материалы, способные тлеть (древесина, бумага).
К недостаткам диоксида углерода и азота как огнетушащих веществ следует отнести их высокие огнетушащие концентрации и отсутствие охлаждающего эффекта при тушении.
Водяной пар нашел широкое применение в стационарных установках тушения в помещениях с ограниченным количеством проемов, объемом до 500 м 3 (сушильные и окрасочные камеры, трюмы судов, насосные по перекачке нефтепродуктов и т.п.), на технологических установках для наружного пожаротушения, на объектах химической и нефтеперерабатывающей промышленности.
Предпочтение отдают насыщенному пару, хотя применяют и перегретый. Наряду с разбавляющим действием водяной пар охлаждает нагретые до высокой температуры технологические аппараты, не вызывая резких температурных напряжений, а пар, поданный в виде компактных струй, — способен механически отрывать пламя.
Тонкораспыленная вода (диаметр капель меньше 100 мк) — для получения ее применяют насосы, создающие давление свыше 2-3 МПа (20-30 атм) и специальные стволы-распылители.
Попадая в зону горения, тонкораспыленная вода интенсивно испаряется, снижая концентрацию кислорода и разбавляя горючие пары и газы, участвующие в горении. Об эффективности применения тонкораспыленной воды для целей пожаротушения свидетельствуют опыты, проведенные на морских судах, где установлено, что после четырехминутной работы одного ствола высокого давления температура в помещениях кают снижалась с 700 до 100°С, содержание аэрозоля в дыму уменьшалось в 3 раза, увеличивалась освещенность предметов источником света, резко снижалось содержание оксида углерода за счет поглощения водой.
Таким образом, разбавляющие огнетушащие средства, наряду с охлаждающим и изолирующим, обладают достаточно высоким эффектом тушения и должны настойчиво внедряться в практику работы пожарных подразделений. Особое внимание при этом следует уделить более широкому применению тонкораспыленной воды.
Огнетушащие вещества химического торможения
Сущность прекращения горения химическим торможением реакции горения заключается в том, что в воздух горящего помещения или непосредственно в зону горения вводятся такие огнетушащие вещества, которые вступают во взаимодействие с активными центрами реакции окисления, образуя с ними либо негорючие, либо менее активные соединения, обрывая тем самым цепную реакцию горения. Поскольку эти вещества оказывают воздействие непосредственно на зону реакции, в которой реагирующие вещества находятся в паровоздушной фазе, они должны отвечать следующим специфическим требованиям:
Этим требованиям отвечают галоидированные углеводороды — особо активные вещества, оказывающие ингибирующее действие, т.е. тормозящие химическую реакцию горения. Однако в отношении этих веществ следует напомнить общие требования к огнетушащим веществам и особенно на такое, как токсичность. Наиболее широкое применение нашли составы на основе брома и фтора. Галоидированные углеводороды и огнетушащие составы на их основе имеют высокую огнетушащую способность при сравнительно небольших расходах.
Причем, прекращение горения достигается именно химическим путем, что подтверждается опытами. Если для прекращения горения разбавлением необходимо снизить концентрацию кислорода, то в данном случае она остается в пределах 20-20,6%, что явно достаточно для протекания реакции окисления.
Исследованиями последних лет установлено, что огнетушащие порошки, которые подаются в горящие объемы в виде аэрозоля (т.е. порошки не покрывают горящую поверхность, а облако из него окружает зону горения), прекращают горение также путем химического торможения.
Соли металлов, содержащиеся в порошке, вступают в реакцию с активными центрами. Соли металла в зоне реакции нагреваются до высокой температуры и переходят в жидкое состояние (возможно, частично испаряются). Остальная часть молекулы соли разлагается с образованием либо металла, либо окиси или гидрата металла.
Однако из-за высоких огнетушащих свойств он входит как основной компонент в огнетушащие составы, такие, как 3,5,4НД, БФ-1 и 2БМ. Бромистый этил обладает хорошей смачивающей способностью, составы на его основе можно использовать для тушения древесины, органических жидкостей, хлопка и других волокнистых материалов.
На основе галоидированных углеводородов и углекислоты разработаны огнетушащие составы, компоненты которых приведены в (табл. 1).
Составы | Содержание компонентов, % по массе | |||
C2H5Br | СО2 (жидкость) | C2F4Br2 | CH2Br2 | |
3,5 | 70 | 30 | — | — |
7 | 20 | — | — | 80 |
4НД | 97 | 3 | — | — |
БФ-1 | 84 | — | 16 | — |
БФ-2 | 73 | — | 27 | — |
ТФ | — | — | 100 | — |
БМ | 70 | — | — | 3 |
Составы обладают свойствами компонентов их составляющих. Например, состав ТФ — это чистый тетрафтордибромэтан, или, как его нередко называют, фреон 114В2 или хладон. Состав 3,5 в 3,5 раза эффективнее диоксида углерода (отсюда и название состава). При нормальных условиях из 1 кг состава 3,5 образуется 144 л паров бромистого углерода. При тушении состав выбрасывается из насадки в виде распыленной струи жидкости, которая быстро испаряется. На открытых пожарах струя подается в зону горения на поверхность горящего материала; при тушении внутренних пожаров — в объем помещения.
Состав 7 по своим свойствам ближе к бромистому метилену. Из 1 л состава образуется 430,2 л паров (342,3 л бромистого метилена и 80,9 л бромистого этила).
Состав 4НД по свойствам почти не отличается от бромистого этила. Небольшое количество углекислоты вводится в качестве флегматизатора и для лучшего распыления.
Водобромэтиловая эмульсия состоит из 90% воды и 10% по массе бромистого этила. Для ее получения не требуется никаких дополнительных устройств. В бачок для пенообразователя заливается бромистый этил. С помощью стационарного пеносмесителя он вводится в воду, эмульсия подается через обычные стволы-распылители. Капли эмульсии, подаваемые в очаг пожара, имеют следующее строение — капелька бромэтила снаружи имеет водяную оболочку. Достигая зоны горения или попадая в нее, из-за низкой температуры кипения бромистый этил превращается в пар, разрывая при этом капли воды, делая воду мелкодисперсной. Горение прекращается как за счет разбавления горючих паров и газов водяным паром (мелкодисперсная вода почти полностью испаряется в зоне горения), так и химическим торможением реакции окисления. Время тушения эмульсией в 7-10 раз меньше по сравнению с водой, подаваемой из того же ствола-распылителя.
Галоидированные углеводороды эффективнее инертных газов. Например, тетрафтордибромэтан более чем в 10 раз эффективнее диоксида углерода и почти в 20 — водяного пара.
Благодаря высокой плотности паров и жидкостей возможна подача их в очаг пожаров в виде струй, проникновение капель в зону горения, а также удержание огнетушащих паров у очага горения. Галоидоуглеводороды и огнетушащие составы на их основе имеют низкую температуру замерзания, поэтому они могут быть эффективно применены в условиях низких температур, однако по экологическим условиям производство галоидированных углеводородов сокращается.
Интенсивность подачи и удельный расход огнетушащих веществ
Огнетушащие вещества имеют первостепенное значение в прекращении горения. Однако горение может быть ликвидировано лишь в том случае, когда для его прекращения подается определенное количество огнетушащего вещества.
В практических расчетах необходимого количества огнетушащего вещества для прекращения горения пользуются величиной интенсивности его подачи.
Под интенсивностью подачи огнетушащих веществ понимается их количество, подаваемое в единицу времени на единицу расчетного параметра пожара (площади, периметра, фронта или объема).
Различают: линейную; поверхностную; объемную интенсивности подачи. Они определяются опытным путем и расчетами при анализе потушенных пожаров.
Наиболее часто в расчетах используется поверхностная интенсивность подачи (по площади пожара). Некоторые значения требуемой интенсивности подачи огнетушащих веществ, которыми пользуются при расчетах сил и средств, приводятся ниже. Например, для воды, л/(с·м 2 ):
Административные здания | 0,08-0,1 |
Жилые здания, гостиницы, здания II-1II степени огнестойкости | 0,08-0,1 |
Животноводческие здания | 0,1-0,2 |
Производственные цеха и помещения категорий А, Б, В | 0,06-0,2 |
Это обобщенные цифры. В справочной литературе они даются конкретно для того или иного объекта. Обобщение сделано с целью демонстрации интервала разброса и необходимости учета конкретной обстановки.
В зависимости от вида пожара, способа прекращения горения расчет огнетушащих веществ производится на различные параметры пожара. Например, метр (м) периметра площади тушения или ее части (фронта, флангов и т.п.), метр квадратный (м 2 ) площади тушения, метр кубический (м 3 ) объема помещения, установки, здания, дебита газонефтяного фонтана и т.д. Такие параметры пожара называются расчетными.
Расход огнетушащего вещества на расчетный параметр пожара за все время тушения называется удельным расходом.
Удельный расход огнетушащего вещества является одним из основных параметров тушения пожара. Он зависит от физико-химических свойств пожарной нагрузки и огнетушащих веществ, коэффициента поверхности веществ пожарной нагрузки, удельных потерь огнетушащего вещества, которые происходят в процессе подачи его в зону горения и нахождения в ней.
Фактический удельный расход огнетушащего вещества в некоторой степени позволяет оценить деятельность РТП и подразделений по тушению пожаров в сравнении с подобными по виду и классу пожарами. Снижение удельного расхода служит одним из показателей успешного тушения пожара.
Фактический удельный расход огнетушащих веществ представляет собой сумму необходимого удельного расхода и его потерь.
Количество огнетушащего вещества, необходимое для прекращения горения на расчетном параметре пожара, при условии, что оно полностью расходуется на прекращение горения, называется необходимым удельным расходом.
На удельный расход влияет не только стадия развития пожара, свойства (природа) огнетушащего вещества, но и степень соприкосновения его с поверхностью горения.
В тех случаях, когда за расчетный параметр принимается площадь пожара, для более точного определения фактического удельного расхода вводится коэффициент поверхности горения.
Коэффициент поверхности твердых горючих материалов изменяется при изменении пожарной нагрузки прямо пропорционально. Следовательно, увеличивается и удельный расход огнетушащих веществ.
Кроме того, в реальных условиях процесс прекращения горения сопровождается сравнительно большими потерями огнетушащих веществ вследствие их разрушения и по другим причинам. Отношение фактического удельного расхода огнетушащего вещества к необходимому называется коэффициентом потерь.
Причинами потерь огнетушащих веществ могут быть отсутствие видимости зоны горения из-за задымления, воздействия высокой температуры как на огнетушащее вещество, так и на ствольщика, который не может приблизиться к зоне горения на необходимое для эффективной работы расстояние; отклонение струй огнетушащих веществ газовыми потоками или ветром, наличие в зоне горения скрытых поверхностей горючего материала от воздействия огнетушащего средства и т.п. Кроме того, потери огнетушащих веществ зависят от опыта работы ствольщика, вида и технического уровня средств подачи, оснащенности пожарных подразделений и др.
Фактический удельный расход огнетушащего вещества не применяется непосредственно для расчета сил и средств, а потребляемая для определения фактической интенсивности подачи огнетушащих веществ при исследовании пожаров и других необходимых случаях.
Интенсивность подачи огнетушащих веществ находится в функциональной зависимости от времени тушения пожара. Чем больше расчетное время тушения, тем меньше интенсивность подачи огнетушащих веществ и наоборот. Область интенсивности подачи от нижнего до верхнего пределов называется областью тушения. Все интенсивности, лежащие в этой области, могут применяться для тушения. Это дает возможность РТП широко маневрировать имеющимися у него в распоряжении силами и средствами пожаротушения. В справочной литературе требуемая интенсивность подачи огнетушащих веществ соответствует ее оптимальным значениям для тех или иных горючих веществ и материалов и называется нормативной или требуемой.
Требуемая интенсивность подачи огнетушащего вещества даже для одного и того же вида пожарной нагрузки изменяется в широких пределах и зависит от коэффициента поверхности горения, плотности самой пожарной нагрузки и др. Зависимость требуемой интенсивности подачи воды, например для тушения твердых горючих материалов, от интенсивности тепловыделения на пожаре приведена ниже:
Интенсивность тепловыделения, Q Вт/м 2 | Требуемая интенсивность подачи воды, л/(с·м 2 ) |
0,14 | 0,05 |
0,29 | 0,10 |
0,58 | 0,20 |
1,06 | 0,40 |
РТП должен учитывать и тот факт, что на интенсивность подачи огнетушащих веществ оказывает влияние расположение пожарной нагрузки и по высоте помещения.
В практике пожаротушения целесообразно использовать такие интенсивности подачи огнетушащих веществ, которые могут быть реализованы существующими техническими средствами подачи и обеспечивают эффективность тушения с минимальными расходами огнетушащих веществ и за оптимальное время.