ложная цементация что это
Цементация стали
Цементация металла – это вид термической обработки металлов с использованием дополнительного химического воздействия. Атомарный углерод внедряется в поверхностный слой, тем самым его насыщая. Насыщение стали углеродом, приводит к упрочнению обогащенного слоя.
Процесс цементации
Целью цементация стали является повышение эксплуатационных характеристик детали. Они должны быть твердыми, износостойкими снаружи, но внутренняя структура должна оставаться достаточно вязкой.
Для достижения данных требований требуется высокая температура, среда, выделяющая свободный углерод. Процесс цементации применим к сталям с содержанием углерода не больше двух десятых долей процента.
Для науглероживания слоя наружной поверхности, детали нагревают с использованием печи до температуры в диапазоне 850С — 950С. При такой температуре происходит активизация выделения углерода, который начинает внедряться в межкристаллическое пространство решетки стали.
Цементация деталей достаточно продолжительный процесс. Скорость внедрения углерода составляет 0,1 мм в час. Не трудно подсчитать, что требуемый для длительной эксплуатации 1 мм можно получить за 10 часов.
Влияние на глубину слоя продолжительности цементации
На графике наглядно показано на сколько зависит продолжительность по времени от глубины наугрероживаемого слоя и температуры нагрева.
Технологически цементация сталей производится в различных средах, которые принято называть карбюризаторами. Среди них выделяют:
Поверхностный слой, получаемый цементацией
Стали под цементацию обычно берутся легированные или же с низким содержанием углерода: 12ХН3А,15, 18Х2Н4ВА, 20, 20Х и подобные им.
Способы цементации
Цементация получила широкое распространение при обработке зубчатых колес и других деталей, работающих при ударных нагрузках. Высокая твердость рабочих поверхностей обеспечивает продолжительный срок работы, а достаточно вязкая середина позволяет компенсировать ударные нагрузки.
Разработаны множество способов науглероживания. Чаще всего используются следующие:
Как происходит процесс цементации с использованием твердой среды
В качестве твердого карбюризатора берется смесь древесного угля (береза, дуб) и соли угольной кислоты с кальцием и другими щелочными металлами. Количество древесного угля может достигать 90%. Для приготовления смеси компоненты дробятся для улучшения выхода углерода. Размер частиц не должен превышать 10 мм. Так же не должно быть микроскопических частив в виде пыли и крошек, поэтому смесь просеивается.
Цементация стали в твердой среде
Для получения готовой смеси пользуются двумя способами. Первый – соль с углем в сухом состоянии тщательно перемешивается. Второй способ – из соли получают раствор. Для этого ее разводят в воде, а после чего этим раствором обильно смачивают древесный уголь. Перед помещением в печь уголь сушат. Его влажность не должна превышать 7%. Получение карбюризатора последним способом более качественно.
Смесь насыпается в ящики. После чего в них помещают детали. Для исключения оттока газа, получаемого во время нагрева, ящики подвергаются герметизации. Плотно закрывающую крышку дополнительно замазывают шамотной глиной.
Ящики подбираются в зависимости от формы детали, их количества и объема засыпанной смеси. Обычно они бывают прямоугольными и круглыми. Материалом для изготовления ящиков может служить сталь как жаростойкая, так и низкоуглеродистая.
Технологический процесс цементации стали можно представить в следующем порядке:
Как происходит процесс цементации в газовой среде
Цементация стали в среде газов производится при массовом выпуске деталей. Глубина цементации не превышает 2-х мм. Используемые газы – естественные или искусственные газы, содержащие углерод. Обычно используется газ, получающийся при распаде нефтепродуктов.
Цементация стали в газовой среде
Его получают в большинстве случаев нагреванием керосина. Больше половины газа подвергают модификации, его крекируют.
Активный углерод при данном способе обработки получается при распаде, и формула имеет следующий вид:
Если пиролизный газ использовался без модифицированного, то в результате обогащенный слой металла будет недостаточным. К тому же пиролизный газ создает обильную сажу.
Печи для данного способа цементации должны быть герметичными. Обычно пользуются стационарными печами, но как вариант методическими.
Цементацию стали и технологический процесс можно представить в следующем порядке:
Подвергаемые цементации изделия помещаются в печь. Температура поднимается порядка 910С — 950С. Производится подача газа в печь. Выдержка в газовой среде определенное время.
Длительность термического воздействия составляет 15 часов при температуре в 920С с получаемым слоем 1,2 мм. Для ускорения производственного процесса температуру поднимают. Уже при 1000С получить такой же науглероженный слой возможно за 8 часов.
В последнее время широкое применение нашел способ проведения процесса в эндотермической среде. Во время активного науглероживания в газовой среде поддерживается значительный потенциал углерода за счет введения природного газа (пропана, бутана или метана). На этот период концентрация газ из нефтепродуктов устанавливается на уровне 1%.
Процесс проведения цементации в жидкой среде
Жидкая среда – это расплавленные соли. В качестве солей используются карбонаты металлов, правда, металлы должны быть щелочными с низкой температурой плавления. Температура проведения цементации при данном методе составляет 850С. Процесс происходит во время погружения деталей в ванну с расплавом и выдерживании их там.
Цементация стали в жидкой среде
Цементация в жидкой среде отличается не большим насыщенным слоем, который не превышает 0,5 мм. Соответственно времени занимает до 3 часов. Среди достоинств следует отметить: обработанные детали имеют незначительную деформацию, а также возможна закалка без промежуточного этапа.
Как происходит процесс цементации в вакууме
Недостаточное давление, создаваемое в печи, значительно сокращает время проведения обработки. Цементацию стали и технологический процесс можно представить в следующем порядке:
Печь для вакуумной цементации
Процесс полностью компьютеризирован. За подачей газа, температурой, давлением следит программа, отвечающая за весь технологический процесс. Среди достоинств следует отметить:
Процесс проведения цементации пастами
При производстве разовых работ рациональнее пользоваться пастами для проведения цементации. В составе пасты находятся: сажа с пылью древесного угля. Толщина слоя наносимой пасты должна быть восьмикратно увеличена для получения требуемого насыщенного слоя.
После нанесения состав просушивается. Для процесса цементации используются индукционные высокочастотные печи. Температура проведения процесса достигает 1050С.
Как происходит процесс цементации в электролитическом растворе
Процесс во многом схож с гальваническим покрытием. В нагретый раствор электролита помещается заготовка. Подведенный ток вызывает получение активного углерода и способствует его проникновению в поверхность стальной заготовки.
Таким способом подвергают обработке детали, имеющие небольшой размер. Параметры для прохождения цементации: напряжение тока – 150-300В, температура 450-1050С.
Свойства металла после обработки
После проведения цементации твердость науглероженного слоя достигает: 58-61 HRC на легированных сталях и 60-64 HRC на низкоуглеродистых сталях. Длительное нахождение стали при высоких значениях температуры, вызывает изменение структуры металла.
Структура стали после цементации
Для исправления крупного зерна металла детали после цементации подвергаются повторному нагреву и закалке с последующим отпуском или нормализацией.
Закалка производится при температуре, не превышающей 900С. В металле происходит измельчение зерна за счет получения перлита и феррита.
Вместо закалки для легированных сталей производят нормализацию. После сквозного прогрева в середине детали образуется мартенсит. Нагрев детали зависит от марки стали, из которой она была изготовлена.
Режимы термической обработки стали после цементации
В качестве заключительной фазы проводят низкотемпературный отпуск, который позволяет устранить поверхностные напряжения и деформации, вызванные высокотемпературной обработкой.
Недостатки цементации
Как было выше сказано основным недостатком после цементации остается изменение структуры металла. В связи с этим требуется дополнительная обработка, что увеличивает время и так длительного процесса цементации.
Для проведения работ требуется обученный и высококвалифицированный персонал. Среди недостатков следует выделить необходимость подготовки карбюризатора.
В заключение стоит отметить, что цементация позволяет использовать, стали с низким содержанием углерода для изготовления ответственных деталей с длительным сроком эксплуатации, что значительно снижает конечную стоимость.
Для защиты поверхностей, не предназначенных под цементацию, пользуются пастами, намеднением или закладывают увеличенные допуски под обработку.
Сталь 12ХН3А конструкционная легированная хромо-никелевая
Заменители
Иностранные аналоги
Германия DIN | 14NiCr10 |
Евронормы (EN) | 1.5732 |
США (SAE) | 9317 |
Великобртания (BS) | En36 |
Япония | SNC815H |
Расшифровка
Согласно ГОСТ 4543-2016 цифра 12 перед буквенным обозначением указывает среднюю массовую долю углерода (C) в стали в сотых долях процента, т.е. среднее содержание углерода в стали 12ХН3А составляет 0,12%.
Буква Х означает, что сталь легирована хромом, отсутствие цифры за буквой означает, что содержание хрома до 1,5%.
Буква Н означает, что сталь легирована никелем, цифра 3 указывает примерную массовую долю никеля в целых единицах, т.е. содержание никеля в стали 12ХН3А примерно 3%.
Буква А означает, что сталь высококачественная, т.е. с повышенными требованиями к химическому составу и макроструктуре стали по сравнению с качественной сталью.
Вид поставки
Характеристики
Сталь 12ХНЗА является конструкционной легированной (хромо-никелевой) цементуемой сталью и предназначена для изготовления деталей, к которым предъявляются требования высокой прочности, пластичности и вязкости сердцевины и высокой поверхностной твердости, работающие под действием ударных нагрузок или при отрицательных температурах, например:
Сталь 12ХН3А сочетает в себе высокую прочность с хорошей пластичностью и имеет хорошую ударную вязкость при низких температурах.
Сталь этой марки относится к лучшим образцам конструкционной стали. Сочетание никеля и хрома обеспечивают этой стали характеристики позволяющие изготавливать из нее ответственные детали.
Так как никель целиком растворяется в твердом растворе, он способствует более значительному увеличению твердости и прочности феррита, чем хром. При одновременном присутствии в стали никеля и хрома достигается хорошее сочетание механических свойства (прочности и вязкости), а также большая прокаливаемость.
Применения стали 12ХН3А для корпусов, крышек, фланцев, мембран и узла затвора, изготовленных из проката, поковок (штамповок)(ГОСТ 33260-2015)
Рекомендации по выбору и применению стали 12ХН3А для деталей арматуры и пневмоприводов, не работающих под давлением и не подлежащих сварке, предназначенных для эксплуатации в условиях низких температур
Марка стали | Закалка + отпуск при температуре, °С | Примерный уровень прочности, Н/мм 2 (кгс/мм 2 ) | Температура применения не ниже, °С | Использование в толщине не более, мм |
12ХН3А | 200 | 1000 (100) | -80 | 40 |
к содержанию ↑
Температура критических точек, °С
Химический состав, % (ГОСТ 4543-71)
C | Mn | Si | Cr | Ni | Р | S | Cu |
не более | |||||||
0,09-0,16 | 0,30-0,60 | 0,17-0,37 | 0,60-0,90 | 2,75-3,15 | 0,025 | 0,025 | 0,30 |
Химический состав, % (ГОСТ 4543-2016)
Марка стали | Массовая доля элементов, % | |||||||||
C | Si | Mn | Cr | Ni | Mo | Al | Ti | V | B | |
0,09-0,16 | 0,17-0,37 | 0,30-0,60 | 0,60-0,90 | 2,75-3,15 | — | — | — | — | — |
Твердость по Бринеллю (ГОСТ 4543-2016)
ПРИМЕЧАНИЕ:
Твердость по Бринеллю указана для металлопродукции в отожженном (ОТ) или высокоотпущенном (ВО) состоянии, а также горячекатаной и кованой металлопродукции, нормализованной с последующим высоким отпуском (Н+ВО), для диаметров или толщин свыше 5 мм.
Термическая обработка
ВНИМАНИЕ. Описание термообработки и цементации для стали 12ХН3А дано на основе описания термообработки для чехославацкой стали-аналога 16420. В тексте ниже сталь 16420 заменена на сталь 12ХН3А (Источник «Цементация стали» Корецкий Я., 1962 г.)
При отжиге для смягчения сталь 12ХН3А нагревают до 610-630°С в течение 4 час., после чего следует медленное охлаждение в печи. Нормализацию производят при температуре 830-870°С с постепенным охлаждением иа воздухе.
Науглероживание происходит достаточно плавно; в соответствующей среде и при указанной температуре цементации сталь 12ХН3А не склонна к образованию цементита. Кроме того, она не образует большого количества остаточного аустенита при соответствующей толщине слоя. Сталь не рекомендуется закаливать непосредственно с температуры цементации: достаточной является
после постепенного охлаждения одинарная закалка при температуре 790-810°С в масле. Двойная закалка для этой стали не приносит пользы, а ведет, наоборот, к большой деформации. В воде закаливают только большие по размеру детали без надрезов и выступов. Сталь 12ХН3А получает после цементации на поверхности надежную твердость 60-62 HRC.
Поскольку аналогом-заменителем стали 12ХН3А является сталь 12ХН2, то ниже приведено описание процесса цементации для стали 12ХН2.
Цементация стали 12ХН2 производится при 900-920°С с последующей закалкой в масле с температуры 790-810°С и отпуском при 170-180°С.
Влияние хрома (Cr) и никеля (Ni) на цементацию стали 12ХН3А
Хром в цементуемых сталях способствует насыщению слоя углеродом. Он препятствует образованию остаточного аустенита, вследствие чего цементованный слой в хромистых сталях имеет надежную твердость.
Сердцевина хромистых сталей обладает хорошими твердостью и ударной вязкостью. Хром улучшает прокаливаемость стали и уменьшает ее склонность к возникновению мягких пятен.
Никель не оказывает существенного влияния на диффузию углерода в сталь, но снижает предел наибольшего содержания углерода в слое. Никель придает слою способность к сохранению остаточного аустенита, снижающего
твердость слоя. Оказывая благотворное влияние на прокаливаемость, никель придает сердцевине хорошую ударную вязкость при плавном повышении прочности. Он снижает температуры, необходимые для нагрева слоя и сердцевины при закалке,
и способствует тому, что при обычной закалке сталь остается мелкозернистой. Никель способствует сохранению хорошей ударной вязкости закаленных цементованных сталей, используемых при низкой температуре.
Механические свойства (ГОСТ 4543-2016)
Марка стали | 12ХН3А | |||
Режим термической обработки | Закалка | Температура, °С | 1-й закалки или нормализации | 860 |
2-й закалки | 760-810 | |||
Среда охлаждения | Вода или масло | |||
Отпуск | Температура, °С | 180 | ||
Среда охлаждения | Воздух или масло | |||
Механические свойства, не менее | Предел текучести, σт, МПа | 685 | ||
Временное сопротивление, σв, МПа | 930 | |||
Относительное | удлинение δ5, % | 11 | ||
сужение Ψ, % | 55 | |||
Ударная вязкость KCU, Дж/см 2 | 88 | |||
Размер сечения заготовок для термической обработки (диаметр круга или сторона квадрата), мм | 15 |
к содержанию ↑
Механические свойства заготовки диаметром 70 мм в зависимости от температуры отпуска
tотп, °С | σ0,2, МПа | σв, МПа | δ5, % | ψ, % | KCU, Дж/см 2 | Твердость HB |
200 | 1270 | 1370 | 12 | 60 | 98 | 400 |
300 | 1130 | 1270 | 13 | 68 | 78 | 380 |
400 | 1080 | 1200 | 14 | 68 | 83 | 375 |
500 | 930 | 1030 | 19 | 70 | 118 | 280 |
600 | 670 | 730 | 24 | 75 | 167 | 230 |
ПРИМЕЧАНИЕ: Закалка с 800 °С в масле.
Механические свойства в зависимости от сечения
Сечение, мм | σ0,2, МПа | σв, МПа | δ5, % | ψ, % | KCU, Дж/см 2 | Твердость HRCэ поверхности |
10 | 1080 | 1220 | 13 | 60 | 157 | 35 |
15 | 780 | 980 | 16 | 65 | 152 | 32 |
20 | 730 | 880 | 16 | 70 | 165 | 30 |
25 | 640 | 830 | 20 | 70 | 192 | 28 |
ПРИМЕЧАНИЕ. Ложная цементация при 910 °С, 9 ч; закалка с 810 °С в масле; отпуск при 200 °С, охл. на воздухе.
Механические свойства образцов диаметром 28-50 мм при повышенных температурах
tисп, °С | σ0,2, МПа | σв, МПа | δ5, % | ψ, % | KCU, Дж/см 2 |
20 | 540 | 670 | 21 | 75 | 274 |
200 | 520 | 630 | 20 | 74 | 216 |
300 | 500 | 630 | 12 | 70 | 211 |
400 | 430 | 530 | 20 | 75 | 181 |
500 | 390 | 410 | 19 | 86 | 142 |
550 | 240 | 260 | 21 | 82 | — |
ПРИМЕЧАНИЕ. Отжиг при 880-900 °С; закалка с 860 °С в масле; отпуск при 600 °С, 3 ч.
Механические свойства прутка
Ударная вязкость прутков сечением 10 мм, KCU
Термообработка | KCU, Дж/см 2 при температуре, °С | |
+20 | -40 | |
Закалка с 850 °С в масле; отпуск при 200 °С, 1 ч; HRCэ 37 |
Газовая цементация при 910 °С, 3 ч; закалка с 810 °С в масле; отпуск при 200 °С, 1 ч. HRCэ 58
103
14
Механические свойства при повышенных температурах
tисп, °С | σ0,2, МПа | σв, МПа | δ5, % | ψ, % |
700 | 70 | 140 | 41 | 78 |
800 | 29 | 89 | 61 | 97 |
900 | 27 | 68 | 58 | 100 |
1000 | 23 | 44 | 63 | 100 |
1100 | 23 | 43 | 73 | 100 |
1200 | 12 | 25 | 70 | 100 |
1250 | 10 | 18 | 67 | 100 |
ПРИМЕЧАНИЕ: Образец диаметром 10 мм и длиной 50 мм, кованый и отожженый.
Скорость деформирования 5 мм/мин; скорость деформации 0,002 1/с.
Предел выносливости
Характеристики прочности | σ-1, МПа | τ-1, МПа |
σ-1 = 680 МПа; σв = 960 МПа; HB 322 | 382 | — |
σ-1 = 610 МПа; σв = 730 МПа; HB 238 | 338 | 230 |
σв = 690 МПа; n = 10 δ | 382-461 | 216-255 |
σв = 910 МПа | 441 | 245 |
Технологические свойства
Температура ковки, °С: начала 1220, конца 800. Сечения до 100 мм охлаждаются на воздухе, сечения 101-300 мм — в яме.
Свариваемость — ограниченная. Способы сварки: РДС, АДС под флюсом.
Обрабатываемость резанием — Kv тв.спл. = 1,26 и Kv б.ст. = 0,95 в горячекатаном состоянии при НВ 183-187.
Склонность к отпускной хрупкости — склонна.
Прокаливаемость (ГОСТ 4543-71)
Твердость HRCэ на расстоянии от торца, мм (закалка 849 °С) | |||||||||
1,5 | 3,0 | 4,5 | 6,0 | 7,5 | 9,0 | 12 | 15 | 21,0 | 27,0 |
88,5-43 | 37-43 | 35-42 | 31,5-41 | 25-40,5 | 22-38,5 | 35 | 32 | 28,5 | 26,5 |
Полоса прокаливаемости стали 12ХНЗА после нормализации при 850 °С и закалки с 840 °С приведена на рисунке ниже.
Особенности цементации стали в промышленных и домашних условиях
Популярный способ обработки металлических изделий для укрепления поверхностного слоя и повышения износостойкости — цементация. Технологический процесс основан на принципе насыщения поверхности сплава углеродом. Работы могут производиться в различных средах, множеством разных способов, но обязательно под воздействием высоких температур. Каждому из методов свойственен специфический набор достоинств и недостатков. При необходимости науглероживание можно провести самостоятельно: процесс не требует специального обучения или профессионального оборудования.
Виды цементации
Целью осуществления цементации является создание на поверхности металлических изделия устойчивого защитного слоя, обеспечивающего повышение прочностных характеристик (в том числе твердости и износостойкости).
Каждый из этих видов применяется для разных типов производств.
Цементация в твёрдом карбюризаторе подходит для мелкосерийного производства, а газовая – для постоянных и крупных партий.
Современные методы науглероживания стали разрабатываются с учетом необходимости сокращения процесса. Цементация с бором, титаном и ниобием, а также замена низколегированной углеродистой стали на мелкозернистую, позволяют компенсировать затраты производства и увеличивать прибыль приобретателя деталей из такого металла. На данный момент, подобная практика ведется только за рубежом.
Твердая цементация стали и других металлов
Обработка данным методом осуществляется в твердой среде. В качестве карбюризатора для данной процедуры используют специальную сухую или влажную смесь солей с измельченным древесным углем. Соотношение компонентов — разное, наиболее распространен следующий состав (по ГОСТ 2407-51):
Компонент | Содержание (в %) |
углекислый барий | 20-25 |
углекислый кальций | 35-55 |
древесный уголь (дуб или береза) | 20-40 |
Преимуществом данного способа является получение высокой степени науглеводораживания.
Основной недостаток — большая трудоемкость процесса.
Сфера применения твердой цементации включает как промышленные производства, так и кустарные. Благодаря простоте и относительной безопасности данный метод стал наиболее распространенным способом домашней обработки стали и металлов.
Газовая цементация
Газовая цементация осуществляется с применением полученной смеси. Проведение процедуры углеродного насыщения только с помощью пиролизного газа опасно возможностью появления больших объемов копоти и сажи на поверхности цементируемого изделия. Толщина науглероженного слоя не будет достаточной. На исправление этих недостатков будет необходимо гораздо больше трудозатрат.
Температура в печи при цементации достигает 950 градусов Цельсия. Газ подаётся непосредственно в нагретую печь и находится на протяжении времени, необходимого по технологическому процессу. Печи должны плотно закрываться.
Жидкостная цементация
Для жидкостного науглероживания поверхностей деталей применяются концентрированные растворы карбонатных и щелочных солей.
Преимуществом данного способа является малый процент деформации: весь процесс закалки осуществляется внутри цементационной ванны.
Цементация пастой
В основе данного метода лежит принцип обработки материала пастообразными карбюризаторами, затем детали погружаются в металлические ёмкости и помещаются в печь. Продолжительность термического воздействия (температура не менее 900 градусов Цельсия) составляет от 2 часов (в зависимости от типа изделия).
Слой обмазки должен в 6-8 раз превышать требуемую толщину конечного защитного слоя.
Главное преимущество пастообразной цементации — высокие показатели производительности.
Основной недостаток — неравномерное покрытие поверхностей цементирующим слоем.
Пастовая цементация лучше всего подходит для применения в кустарных условиях, для штучного производства, дома.
Вакуумная цементация
Суть вакуумной цементации заключается в проведении процедуры при низком давлении, менее 0,019 атмосфер. Процесс науглероживания поверхности изделий осуществляется с применением ацетилена, поступающего в печь через сосуды Дьюара. После завершения процедуры детали охлаждаются либо нейтральным газом, либо при помощи масла.
В современной промышленности представлены также технологии цементации, основанные на использовании пропана и этилена.
Нитроцементация
Одновременное насыщение металла углеродом и азотом в газовой камере называется нитроцементацией. Защитный слой для металлической детали появляется в результате одновременной диффузии обоих газов в аустените.
Науглероживание металла с азотом в основном производится при температурах от 800 до 860 градусов Цельсия. Различий между нитроцементированным слоем и простым науглероженным слоем, полученным при этих температурах по существу, нет.
При проведении цементации с азотом при 700° С и ниже, на защитном покрытии детали образуется слой соединений газов с железом, повышающий износостойкость конечного продукта. Уже существуют проекты, предусматривающие применение углеродно-азотистого закаливания с температурой 700° С для деталей с пониженной износостойкостью.
Науглероживание металла с азотом при температуре от 800° С на данный момент наименее затратная процедура, как и цементация сильно нагруженных деталей, шестерней и зубчатых колёс.
Технические характеристики металлических изделий после цементации
Результатом сквозного прогрева металлического изделия является формирование мартенсита в средней части детали. Методика обработки детали после цементации определяется её маркой. Чаще всего применяется отпуск в низкотемпературной среде.
Альтернативные способы повышение износостойкости металлов
Особенности и правила осуществления цементации стали в домашних условиях
Обычно процедура науглероживания металла происходит на специализированных производственных предприятиях. Есть возможность наладить процесс тем, кто занимается изготовлением стальных или медных изделий в частном порядке.
Цементацию своими силами не проводят для углеродистых сталей.
Цементация стали в домашних условиях подразумевает выбор технологии твёрдой среды.
Технология приготовления смеси
Готовая смесь должна быть однородной — это позволит избежать пятна в процессе обработки металла.
Пошаговая инструкция цементации в домашних условиях
Для чего нужно цементировать сталь самостоятельно
Цементация и нитроцементация металла – процедура, часто проводимая частными изготовителями ножей, клинков, мечей, кольчуг и других элементов исторических реконструкций.
Процесс цементации требует много времени, для покрытия защитным слоем в 0,8 мм потребуется не менее 8 часов.
Печи, ящики для цементации, химические реактивы для цементации дорогие, поэтому нередко конечный продукт имеет заоблачную цену.
Наиболее простым и широко применяемым методом повышения износостойкости металлических сплавов, в том числе и в домашних условиях, является цементирование. При соблюдении алгоритма процесса, техники безопасности и тщательного контроля на всех этапах домашнее цементирование металла позволит продлить жизнь деталям любого механизма.