ложным является утверждение что

4 закона логики, которые помогут определить ложные суждения

ложным является утверждение что. Смотреть фото ложным является утверждение что. Смотреть картинку ложным является утверждение что. Картинка про ложным является утверждение что. Фото ложным является утверждение что

В жизни мы часто слышим фразы «это не поддается логике» или «это нелогично». В целом мы понимаем, что речь идет про неверное суждение, ошибочные выводы. Но в чем конкретно нарушена логика — сказать трудно. Существуют 4 закона логики, с помощью которых можно легко отделить ложь от правды. Логика — это древняя наука, появившаяся в 4 веке до н.э., ее основателями были Аристотель, Сократ, Платон и многие другие известные философы, которые усердно изучали законы и формы правильного логического мышления. Давайте разберем на простых примерах значения основных четырех законов логики и как их применить в жизни.

Закон тождества

Любая мысль должна соответствовать самой себе, то есть иметь конкретное значение и быть точной и понятной. Самый известный пример: «ученики прослушали урок». Термин «прослушали» в этом предложение может иметь два определения: то ли ученики ничего не слушали на уроке, то ли, наоборот, внимательно изучали новую тему. Главное, на что необходимо обращать внимание, так это на неоднозначные слова, которые могут иметь несколько значений. Сложнее всего распознать нарушение тождества в сложных утверждениях:

В примере понятие «ничто» в первом варианте означало «отказ от выбора варианта», во втором, как отсутствие чего-либо.

Закон противоречия

Две отрицающих друг друга мысли не могут быть одинаково верными. Например, когда говорят «черный пес» и «белый пес», имея в виду одного и того же пса в одном промежутке времени, то правильным может быть только одно утверждение. В жизни важно выявлять противоречия, отделять игру слов от лжи.

Закон исключенного третьего

Два противоречащих утверждения не должны быть одинаково ложными. Тут важно отличать противоречащие от противоположных утверждений. Первые суждения не имеют третьего варианта, например, большая квартира и небольшая квартира. Противоположные суждения допускают, что возможен и другой вариант, например, «маленькая квартира» и «большая квартира», другой вариант — «средняя квартира». На простых примерах принцип понятен, а вот в жизни противоречащие суждения обычно разделены длинным предисловием, который сбивает с мысли.

Закон достаточного основания

Истинная мысль должна быть основана на аргументах, чтобы быть истинной. Важно, что само утверждение должно следовать из этих фактов. Например, «я готовился к экзамену, поэтому я не заслужил двойку». Один факт не подтверждает утверждение, студент мог просто прочесть лекции и не заучивать нужный материал. Данный закон помогает не делать преждевременных выводов и не верить, например, разной желтой прессе.

Проверьте себя прямо сейчас, как хорошо вы разбираетесь в логике, пройдите бесплатный онлайн-тест на логику.

Источник

Логические задачи и головоломки

Комментарии

Если утверждение, что перед вами четыре ложных утверждения, неверно, то перед вами ДЕЙСТВИТЕЛЬНО четыре ложных утверждения. А это означает, что утверждение, что перед вами четыре ложных утверждения, ПРАВДИВО.
Замкнутый круг.

Если сократить фразу, то получиться парадокс лжеца: «То, что я утверждаю сейчас, ложно».

В верхней задаче и ответе все правильно, там нет порадокса или замкнутого круга.

Там есть только некорректно поставленная задача, так как надо найти из четырех утверждений три неверных, а ведь утверждений пять, то есть я могу взять только устверждения которые ниже, то есть 4 варианта равенств из которых два ложны, и пятого не будет.

+1
это либо некорректная задача, либо к логическим она не имеет никакого отношения. бред полный, автор еще бы в условие 3 абзаца всякой голиматьи написал бы, а потом пошел бы и потерялся пока люди время на хрень такую убивали бы.

Не понимаю, почему «ложным является утверждение, что перед вами четыре утверждения»

просто утверждений 5.

Ложным является утверждение, что перед вами четыре утверждения,потому что утверждение-это правильные примеры(в данном случае,а т.к. двое из них не верны то это не утверждение

говорят что ложным является утверждение не просто о 4 ут-ниях а о 4 ут-ниях с 3 ложными.

Пятым утверждением является непосредственно первая фраза задачи: «Перед вами четыре утверждения. «

потому что на самом деле неверных утверждения 2, а тут сказано, что их 3. значит это ложное утверждение

Вот и надо писать,что «Перед вами четыре утверждения, три из которых являются ложными». Тут делается упор не на то,что перед нами 4 утверждения,их действительно 4,но вот то,что три из них ложные,это не правда,тбо ложных утверждений из преведённых ниже 4 всего 2,а последнее ложное как раз и является утверждение,что перед вами четыре утверждения, три из которых являются ложными.

адмитнистрация если вы ещё тут существуете, исправьте эту задачу. условие верное, так как там действительно 3 неверных утверждения, 2+3=5, 7-3=3, и 9+3=11. удалите одно любое из этих утвержедений и задача обретёт первозданный вид.

а я отгадала)))ура,мои мозги вернулись с отпуска)))).

ВАУ. я тоже догадалась))))))))))))

Почему четыре утверждения когда их пять? Пятое-перед вами четыре утверждения, три из которых являются ложными.значит некорректная задача!

В этом-то и фишка, что одно ложное утверждение спрятано в условии.

1 ложное утверждение:перед вами 4 утверждения
2ложное утвержд.:7-3=3
3 ложное утвержд.:9+3=11

1 ложное утверждение: перед вами 4 утверждения
на самом деле, их 6
2 ложное утверждение: три из них неверных
на самом деле, их 4
3 ложное утверждение: 7-3=3
4 ложное утверждение 9+3=11

таким образом, 4 ложных утверждения и 6.

Мы видим шесть утверждений:

Утверждения (1), (4) и (6) ложные. Их три.

хорошая задачка. сам не допер:)) ответ забавный!

Или (1), (2), (4), (6). Тогда их 4.

Утверждение (2) ошибочно вычленено.
Подойдем с точки зрения логики, и увидим, что запятая в данном случае работает как логическое И.
То есть тут пять утверждений, первое из которых ложно, несмотря на то, что вторая его часть истинна. И все =)
Если же принять вторую часть за ложную, то все первое утверждение станет ложным, и мы получим противоречие.
Задачка однозначна.

задачка классная. пригодилась на уроке. спс

Дело в том что фраза «Перед вами четыре утверждения» сама является утверждением, что делает эту фразу ложной, так как вместе с ней и четырмя примерами, получается пять утверждений, а + ещё два ложных примера, получается 3 ложных утверждей!

Ах, как подковырнули! )

а я сразу догадался

Нельзя формулировать, что «вторым и третьим ложными утверждениями являются. «, если вначале сказано «Ложным является, что перед вами четыре утверждения».
Кривая задача.

Источник

Информатика. 10 класс

Тезаурус

Алгебра логики — раздел математики, изучающий высказывания, рассматриваемые с точки зрения их логических значений (истинности или ложности), и логические операции над ними.

Логическое высказывание — это повествовательное предложение, в отношении которого можно однозначно сказать, истинно оно или ложно.

Высказывания, образованные из других высказываний, называются составными. Высказывание, никакая часть которого не является высказыванием, называется элементарным.

Логическая переменная — это переменная, которая обозначает любое высказывание и может принимать логические значения «истина» или «ложь».

Логическая операция полностью может быть описана таблицей истинности, указывающей, какие значения принимает составное высказывание при всех возможных значениях образующих его элементарных высказываний.

Инверсия — логическая операция, при которой высказыванию ставится в соответствие новое высказывание, значение которого противоположно исходному.

Конъюнкция — логическая операция, ставящая в соответствие двум высказываниям новое высказывание, являющееся истинным тогда и только тогда, когда оба высказывания истинны.

Дизъюнкция — логическая операция, которая двум высказываниям ставит в соответствие новое высказывание, являющееся ложным тогда и только тогда, когда оба высказывания ложны.

Логическая операция, ставящая в соответствие двум высказываниям новое, являющееся ложным тогда и только тогда, когда первое высказывание (посылка) истинно, а второе (следствие) — ложно, называется импликацией.

Логическая операция, ставящая в соответствие двум высказываниям новое, являющееся истинным тогда и только тогда, когда только одно из двух высказываний истинно, называется строгой (исключающей) дизъюнкцией.

Логическая операция, ставящая в соответствие двум высказываниям новое, являющееся истинным, когда оба исходных высказывания истинны или оба исходных высказывания ложны, называется эквиваленцией или равнозначностью.

При преобразовании или вычислении значения логического выражения логические операции выполняются в соответствии с их приоритетом:

Операции одного приоритета выполняются в порядке их следования, слева направо. Скобки меняют порядок выполнения операций.

Предикат — это утверждение, содержащее одну или несколько переменных. Из имеющихся предикатов с помощью логических операций можно строить новые предикаты.

Таблицу значений, которые принимает логическое выражение при всех сочетаниях значений входящих в него переменных, называют таблицей истинности логического выражения.

Истинность логического выражения можно доказать путем построения его таблицы истинности.

Функцию от n переменных, аргументы которой и сама функция принимают только два значения — 0 и 1, называют логической функцией. Таблица истинности может рассматриваться как способ задания логической функции.

Список литературы

Основная литература по теме урока:

— Л. Л.Босова, А. Ю.Босова. Информатика. Базовый уровень: учебник для 10 класса. — М.: БИНОМ. Лаборатория знаний, 2017 (с.174—197)

Дополнительная литература по теме урока:

— К. Ю.Поляков, Е. А.Еремин. Информатика углубленный уровень: учебник для 10 класса: часть 1. — М.: БИНОМ. Лаборатория знаний, 2013 (с.159—196)

Открытые электронные ресурсы по теме:

Источник

Логика: предикатная, формальная и сентенциальная. Кванторы и возникновение информатики

1 | Введение

Логика, как эпистемологический инструмент, — исследующий знание как таковое, — изобретена независимо в трёх отдельных государствах: Греции (Аристотелем), Китае (до правления Цинь Шихуанди) и Индии. В последних двух государствах логика не распространилась настолько, чтобы получить полноценное развитие. В античной же Греции логика сформировалась в своих основах столь определённо, что дополнилась только через 2 тысячелетия.

Значительные изменения в греческую логику, помимо Буля, Моргана и Рассела, внёс Фреге — самая важная фигура основателей формальной семантики. Он разработал логику предикатов и 2 вида кванторов, попытавшись создать «логически совершенный язык» о котором мечтал Лейбниц. Значимой личностью является также Гёдель, который открыл знаменитые две теоремы о неполноте, описывающие невозможность объединения множества доказуемых утверждений со множеством истинных. Он утверждал, что доказательства математики зависят от начальных предположений, а не фундаментальной истины, из которой происходят ответы. Одна из главных идей его работ состоит в том, что ни один набор аксиом, — в том числе математических, — не способен доказать свою непротиворечивость.

На этом этапе некоторые заметят влияние платонизма на австрийского логика. Совершенно верно, ведь Гёдель не раз заявлял о влиянии метафизики Платона на собственную деятельность. Но сам Платон развитию формальной логики способствовал лишь косвенно: в истории он вносит вклад в развитие другого направления — философской логики. Платоном созданы вопросы, на которых основывается вся западная академическая философия вплоть до наших дней. Философия, в том виде, котором она известна, возникла только благодаря учителю Аристотеля.

ложным является утверждение что. Смотреть фото ложным является утверждение что. Смотреть картинку ложным является утверждение что. Картинка про ложным является утверждение что. Фото ложным является утверждение чтоПлатон — учитель Аристотеля

В другие периоды в логику также вносили дополнения:

античной школой стоицизма введены термины «модальности», «материальной импликации», «оценки смысла и истины», которые являются задатками логики высказываний;

также средневековыми схоластами введены несколько понятий;

Но главное, что сами логические операции не изменились. «Органон» Аристотеля, как сборник из 6 книг — первоисточник, где подробно описаны главные логические законы. «Органон» (с древнегреческого ὄργανον), означает — инструмент. Аристотель считал, что логика является инструментом к познанию. Он объединяет методом получения информации такие науки:

Физика — наука о природе;

Метафизика — наука о природе природы;

Биология — раздел физики, наука о жизни;

Психология — раздел физики, наука о душе;

Кинематика — раздел физики, наука о движении;

2 | Терминология

У каждой из наук должен быть идентичный фундамент в способе получения гнозисов (знаний), который позволит упорядочить информацию и вывести новые силлогизмы (умозаключения). Только таким образом получится прогресс в познании истины. Без логики наука была бы похожа на коллекционирование фактов, ибо информация бы не поддавалась анализу.

Сам Аристотель находит логике как средству убеждения иное применение: в риторике, спорах, дебатах, выступлениях и т.д., описывая это в труде «Риторика». В западной философии принято давать чёткие определения перед рассуждениями, поэтому определимся с терминами. Логика — наука о правильном мышлении.

В языковой зависимости возникают трудности трактовки термина «наука», но даже в оригинальном названии труда Фридриха Гегеля «Наука логики» — «Wissenschaft der Logik», употребляется слово «наука» (Wissenschaft). Поэтому придём к консенсусу и будем считать, что научной можно назвать ту дисциплину, в которой возможны открытия, исследование и анализ. Логика в таком случае — наука, ибо внутри неё возможно совершать открытия. Яркий пример — комбинаторика Лейбница.

Слово «правильный» веет нормативными коннотациями: правильное поведение, правильное выражение лица, и т.д. Перечисленное соответствует некоторым критериям и логика выставляет их (критерии) для правильного мышления.

Слово «мышление» понимается на интуитивном уровне, но чёткое объяснение затруднительно, обширно и иногда не объективно.

ложным является утверждение что. Смотреть фото ложным является утверждение что. Смотреть картинку ложным является утверждение что. Картинка про ложным является утверждение что. Фото ложным является утверждение чтоБюст Аристотеля

3 | Формальная и неформальная логика

Первоначально, деление логики происходит на формальную и неформальную. Формальная логика отличается тем, что, в отличие от неформальной, записывается уравнениями. Неформальная же логика пишется выражениями в форме языка, поэтому она подходит для риторики, а формальная логика для абстрактных наук.

Формальная логика равным образом делится на дедуктивную и индуктивную. Они различаются тем, что в дедуктивном аргументе истинность условий гарантирует истинность умозаключения или вывода. В индукции же, при истинности условий одинаково возможен ложный и истинный вывод.

Законы формальной логики:

1. Закон тождества (А = А): эквивокация или двусмысленность недопустимы. Нельзя подменять одно понятие, другим.

2. Закон непротиворечия (А ∧ ¬А = 0): одно и то же утверждение не может быть истинным и ложным одновременно.

3. Закон исключения третьего или бивалентности (А ∨ ¬А = 1): утверждение может быть либо истинным, либо ложным — третьего не дано.

Принципы формальной логики:

1. Принцип достаточного обоснования: достаточными являются такие фактические и теоретические обоснования, из которых данное суждение следует с логической необходимостью.

ложным является утверждение что. Смотреть фото ложным является утверждение что. Смотреть картинку ложным является утверждение что. Картинка про ложным является утверждение что. Фото ложным является утверждение что

4 | Сентенциальная логика (алгебра высказываний)

Базовые операции сентенциальной логики — логики высказываний, где заглавная буква означает предложение:

Отрицание (Утверждение ¬A истинно тогда и только тогда, когда A ложно): если имеем утверждение «А» и имеем утверждение «не А», то, когда утверждение «А» будет истинным — утверждение «не А» будет ложным. Также и когда утверждение «А» будет ложным — утверждение «не А» будет истинным.

Конъюнкция (Утверждение A ∧ B истинно, если и A, и B — истинны. Ложно в противном случае): в английском языке — союз «and/&»; в русском — «и». В утверждении «А и В», между «А» с «В» стоит знак конъюнкции — «∧». Утверждение «А и В» является истинным, если «А» с «В» являются истинными одновременно. Если хоть один элемент ложен, то всё утверждение ложно. «А и В» подразумевает, во-первых: истинность «А», во-вторых: истинность «В».

Дизъюнкция (Утверждение A ∨ B верно, если A или B (или оба) верны. Если оба не верны — утверждение ложно): в английском языке — союз «or»; в русском — «или». Существует два типа дизъюнкции — включающая и исключающая (в логике используется включающее «или»). Условия таковы, что утверждение «А или В» будет истинным, когда один или оба элемента истинны, но никогда — когда оба элемента ложны. Это противоречит нашему обыденному мышлению, т.к. когда спрашивают: «Чай или кофе?» мы выбираем один элемент, но в логике подразумевается выбор не только одного, а нескольких возможных.

Импликация (Утверждение A ⇒ B ложно, только когда A истинно, а B ложно): в английском языке — «therefore»; в русском языке — «следовательно». Подразумевает истинность одного элемента при истинности другого. Потому что условия истинности соблюдаются всегда, кроме случая, когда «А» истинно, а «B» ложно. Поэтому утверждение: «А» ложно, следовательно «B» ложно — истинно. Покажется, что когда «А» ложно, а «В» истинно — не соблюдаются условия, но это не так. Если вы скажете, что после дождя промокните — это утверждение будет истинным вне зависимости от того, пошёл дождь или нет.

Эквивалентность (Утверждение A ⇔ B истинно, только если оба значения A и B ложны, либо оба истинны): если истинно утверждение «А, следовательно В» и истинно утверждение «В, следовательно А», то истинными являются выражения «А эквивалентно В» и соответственно «В эквивалентно А». Условия истинности соблюдаются в случаях, когда оба элемента истинны или оба ложны.

Значение переменных

ложным является утверждение что. Смотреть фото ложным является утверждение что. Смотреть картинку ложным является утверждение что. Картинка про ложным является утверждение что. Фото ложным является утверждение что

5 | Предикатная логика первого порядка

В XX веке, после добавлений в область логики работ Лейбница и Фреге, на основе этой дисциплины создаётся новая — информатика. Программирование сохраняет преемственность с видоизменённой логикой Аристотеля — предикатной логикой, описательная способность которой выше, чем у логики высказываний (сентенциальной).

Прежде чем разобрать этот новый тип логики, поговорим об её отличии от сентенциальной. Главная особенность предикатной логики, что заглавными буквами обозначаются предикаты, а не целые высказывания. Можно сказать, что предикат — это математическая функция, которая «накладывает» множество субъектов на множество утверждений.

Высказывание «Я пошёл в зоопарк» — состоит из субъекта и предиката. В нём субъект — «Я», а предикат — то, что остаётся кроме субъекта («пошёл в зоопарк»). Субъект — тот, кто совершает действие в предложении или имеет выраженное свойство; предикат — всё оставшееся. Таким образом, если в сентенциальной логике высказывание «Я пошёл в зоопарк» выражалось бы одной заглавной буквой, то в логике предикатов использовались бы две буквы (заглавная и подстрочная): «P» — для предиката; «x» — для субъекта. Субъекты обозначаются переменной («x»), потому что в предикатной логике появляются две относительно новые операции: универсальный и экзистенциальный кванторы. Особенность кванторов заключается в том, что ими возможно записать выражение истинное при всех возможных переменных «х» или хотя бы при одном.

Универсальный квантор (квантор всеобщности) обозначается символом — «∀», с указанием переменной под ним. Возьмём утверждение «Все пингвины чёрно-белые». В логике высказываний оно бы выражалось как «X ⇒ P», где «X» — нечто являющееся пингвином, а «P» — нечто являющееся чёрно-белым. В предикатной логике же используются субъекты и предикаты, поэтому нечто являющееся пингвином (субъект), обозначалось бы переменной «х» снизу под предикатом. «»х» — является пингвином, следовательно, является чёрно-белым». Записывается так: P(х) ⇒ B(х), где P(х): х — пингвин; B(х): x — чёрно-белый.

Однако этого недостаточно, ведь непонятно, один субъект «х» чёрно-белый или больше одного, а может вообще все. Поэтому утверждение «»х» — является пингвином, следовательно, является чёрно-белым», берётся в скобки и перед скобками используется символ «∀» с переменной «х» под ним — которые вместе и будут универсальным квантором.

Универсальный квантор переводится как: «Для всех «х» истинно, что …». Теперь утверждение «х — является пингвином, следовательно, является чёрно-белым» с универсальным квантором перед ним, расшифровывается так: «Для всех «х» истинно, что «х» — является пингвином, следовательно, является чёрно-белым». Это означает, что чем бы ни был объект во вселенной, если этот объект пингвин — он является чёрно-белым. Полная запись будет выглядеть так:

ложным является утверждение что. Смотреть фото ложным является утверждение что. Смотреть картинку ложным является утверждение что. Картинка про ложным является утверждение что. Фото ложным является утверждение что ложным является утверждение что. Смотреть фото ложным является утверждение что. Смотреть картинку ложным является утверждение что. Картинка про ложным является утверждение что. Фото ложным является утверждение что

Экзистенциальный квантор (квантор существования) обозначается символом — «∃» с указанием переменной под ним. Возьмём утверждение «Некоторые пингвины серые». Как и в прошлый раз, выражение «»x» — является пингвином и «х» — является серым» возносим в скобки и ставим перед ними квантор, в этом случае экзистенциальный с указанной переменной. «»x» — является пингвином и «х» — является серым» записывается так: P(х) ∧ C(х), где P(х): х — пингвин; C(х): x — серый.

Экзистенциальный квантор можно перевести так: «Есть такой «х», для которого будет истинно, что …». Подразумевается, что есть как минимум один «х», для которого выполняются условия выражения. Если вам говорят, что ДНК не существует, достаточно показать одну молекулу дезоксирибонуклеиновой кислоты для опровержения этого утверждения. Также и с кванторами, если существует хотя бы один серый пингвин, то утверждение об отсутствии серых пингвинов будет ложно. Полная запись экзистенциального квантора для выражения «Есть такой «х», для которого будет истинно, что «x» — является пингвином и «х» — является серым», будет выглядеть так:

ложным является утверждение что. Смотреть фото ложным является утверждение что. Смотреть картинку ложным является утверждение что. Картинка про ложным является утверждение что. Фото ложным является утверждение что ложным является утверждение что. Смотреть фото ложным является утверждение что. Смотреть картинку ложным является утверждение что. Картинка про ложным является утверждение что. Фото ложным является утверждение что

6 | Заключение

Примечательно, что есть возможность перевода одного вида квантора в другой. Возьмём утверждение «Все пингвины не являются серыми». Для универсального квантора текстовая запись будет такая: «Для всех «х», будет истинным утверждение о том, что если «х» — является пингвином, то «х» — не является серым объектом». Но утверждение изменяется и для экзистенциального квантора, используя знак отрицания: «Нет такого «х», для которого бы было истинным утверждение о том, что «x»— является пингвином и «х»— является серым».

В середине XIX века, Готлоб Фреге дополнил логику Аристотеля двумя этими операциями, которые позже сформировались в отдельную дисциплину — предикатную логику. С введением в логику экзистенциального квантора (после универсального) — предикатная логика, в основе своей, завершилась как система…

Источники:

1 — Аристотель: «Органон» — «Первая аналитика» и «Вторая аналитика»;

2 — Аристотель: «Риторика»;

3 — Готлоб Фреге: «Исчисление понятий»;

4 — «Monatshefte für Mathematik und Physik» 1931 г.: Курт Гёдель «О принципиально неразрешимых положениях в системе Principia Mathematica и родственных ей системах»;

5 — The Early Mathematical Manuscripts of Leibniz;

6 — Мельников Сергей: «Введение в философию Аристотеля»;

7 — Гильмутдинова Нина: «Логика и теория аргументации»;

Источник

Проблема останова лжеца Гёделя и брадобрея Кантора

Здравствуйте, меня зовут Дмитрий Карловский. А вы на канале Core Dump, где мы берём различные темы из компьютерной науки и деконструируем их по полочкам.

А на этот раз мы разберём тему «абсурда» — почему он возникает и к каким странным последствиям приводит неосторожное обращение с ним. Докажем, что Санты не существует. Научимся пересчитывать линейки. Остановим временную петлю. И элегантно преодолеем столетний кризис оснований математики.

Так что забирайтесь в кроличью нору — вас ждёт короткое, но увлекательное приключение.

ложным является утверждение что. Смотреть фото ложным является утверждение что. Смотреть картинку ложным является утверждение что. Картинка про ложным является утверждение что. Фото ложным является утверждение что

Классическая логика

Начнём с самых основ. Какие бывают утверждения?

ложным является утверждение что. Смотреть фото ложным является утверждение что. Смотреть картинку ложным является утверждение что. Картинка про ложным является утверждение что. Фото ложным является утверждение что

В рамках классической логики они бывают либо правдивыми, либо ложными. Обозначим их соответственно зелёным и красным цветами.

Многозначная логика

Однако, важно понимать, что понятие истинности применимо лишь для корректных утверждений, то есть имеющих какой-то смысл.

ложным является утверждение что. Смотреть фото ложным является утверждение что. Смотреть картинку ложным является утверждение что. Картинка про ложным является утверждение что. Фото ложным является утверждение что

Обозначим корректные утверждения голубым, абсурдные — фиолетовым, а суждения, истинность которых не известна, — жёлтым. Таким образом мы получили так называемую четырёхзначную логику, позволяющую однозначно классифицировать любые типы утверждений исходя из доступной касательно них информации.

Четыре значения истинности

Но почему именно 4 значения нужно, чтобы классифицировать любые утверждения? Дело в том, что это число всех возможных пересечений двух бинарных параметров: может ли утверждение быть правдой и может ли оно быть ложью.

ложным является утверждение что. Смотреть фото ложным является утверждение что. Смотреть картинку ложным является утверждение что. Картинка про ложным является утверждение что. Фото ложным является утверждение что

Именно поэтому не бывает, например, пятеричной логики. А вот троичные бывают — они либо удаляют одно из приведённых тут значений из рассмотрения, либо объединяют абсурд и неопределённость в одно значение — «некорректность».

Доведение до абсурда

Давайте рассмотрим, как понятие корректности помогает нам делать логические выводы, на примере популярного в математике метода «доказательства от противного».

ложным является утверждение что. Смотреть фото ложным является утверждение что. Смотреть картинку ложным является утверждение что. Картинка про ложным является утверждение что. Фото ложным является утверждение что

Допустим, что оно ложно. Тогда после вычисления левой и правой частей мы получим, что суждение 4=4 тоже ложно. Однако, у нас есть аксиома тождества утверждающая, что любое число равно самому себе. Получаем противоречие: зелёная стрелка упирается в красный прямоугольник. То есть эта ветка рассуждений абсурдна и поэтому отбрасывается. А значит исходное уравнение не может быть ложным.

Но может ли оно быть правдивым? Что ж, рассмотрим и эту гипотезу. Из неё вытекает, что 4=4 тоже правдиво, что соответствует аксиоме тождества. И никаких противоречий не возникает. А значит эта ветка рассуждений вполне себе корректна. Таким образом мы доказали, что исходное уравнение не может быть ни чем иным, как правдой.

Может показаться, что проверка второй гипотезы уже лишняя, когда опровергнута первая. Ведь если утверждение не ложно, то оно должно быть правдиво. На этот счёт в классической логике даже есть отдельная аксиома «исключённого третьего». Однако, не стоит забывать, что произвольно взятое утверждение может оказаться не только правдивым или ложным, но и попросту некорректным. И в этом случае та аксиома не применима, как и вся классическая логика. Поэтому прежде чем брать такое утверждение в оборот классической логики, необходимо доказать его корректность. Ну либо всё же использовать не классическую, многозначную логику.

Неполнота

Возьмём, для примера, выражение, утверждающее свою собственную правдивость и попробуем его проанализировать.

ложным является утверждение что. Смотреть фото ложным является утверждение что. Смотреть картинку ложным является утверждение что. Картинка про ложным является утверждение что. Фото ложным является утверждение что

Если оно правдиво, то оно утверждает, что оно правдиво, что не противоречит исходному предположению. А если оно ложно, утверждая, что оно правдиво, значит оно ложно, что тоже подтверждает исходное предположение. Получается, что это утверждение не несёт в себе достаточно информации, чтобы определить его истинность. А значит его требуется дополнить ещё каким-то суждением, которое бы что-то говорило об истинности данного утверждения.

Конкретно в данном случае нам для полноты не хватает аксиомы, позволяющей установить истинность подобных утверждений. Звучать она может, например, так: выражения, утверждающие свою собственную правдивость, не корректны. Просто потому, что они не дают нам никакой полезной информации для дальнейших рассуждений. Назовём её «аксиомой Мюнхгаузена» в честь известного персонажа, вытаскивавшего самого себя из болота за волосы.

Парадокс лжеца

Но что если утверждение будет говорить о своей собственной ложности?

ложным является утверждение что. Смотреть фото ложным является утверждение что. Смотреть картинку ложным является утверждение что. Картинка про ложным является утверждение что. Фото ложным является утверждение что

Если оно правдиво, то из его содержания следует, что оно ложно. Получаем противоречие и отбрасываем. Если же оно ложно, то из отрицания её содержания следует, что оно правдиво. Опять противоречие — снова выбрасываем.

Получается, что такое утверждение противоречиво само по себе, а значит некорректно. Оно не может быть ни правдой, ни ложью, независимо от любых других суждений. Такое утверждение является семантической бессмыслицей, также известной как «парадокс лжеца». И из неё нельзя сделать никаких содержательных выводов, кроме того, что оно абсурдно.

Это — абсурд

Может показаться, что мы не разрешили парадокс, а лишь убежали от него. И если заменить ложность на абсурдность, то парадокс вернётся вновь. Но давайте рассмотрим и выражение «это утверждение абсурдно».

ложным является утверждение что. Смотреть фото ложным является утверждение что. Смотреть картинку ложным является утверждение что. Картинка про ложным является утверждение что. Фото ложным является утверждение что

Из его правдивости следует его же абсурдность, что является абсурдом. Однако, из его ложности следует его корректность, что не вызывает противоречий. Получается, что оно вполне корректно, но ложно. И никаких парадоксов не возникает.

Первая теорема Гёделя о неполноте

Ладно, давайте разберём что-то по сложнее. Например, первую теорему Гёделя о неполноте. Суть её сводится к тому, что в любой непротиворечивой системе утверждений существует такое правдивое утверждение, которое невозможно доказать. То есть эта система не полна. Для обоснования приводится выражение вида «это выражение невозможно доказать». Давайте проанализируем его, как мы умеем..

ложным является утверждение что. Смотреть фото ложным является утверждение что. Смотреть картинку ложным является утверждение что. Картинка про ложным является утверждение что. Фото ложным является утверждение что

Если оно ложно, значит доказать его всё же можно. А если можно доказать, то оно правдиво. Противоречие — отбрасываем. Если же оно правдиво и непротиворечиво, а ложность мы уже отвергли, то получается, что мы его доказали. А оно говорит о своей недоказуемости. Опять противоречие — снова отбрасываем. А так как мы только что доказали, что оно не может быть ни правдивым, ни ложным, значит оно абсурдно.

Тут Гёдель заявляет, что мы же не смогли доказать утверждение, которое говорит о своей собственной недоказуемости, что получается правда и теорема как бы доказана. Однако, тут важно помнить, что невозможность правдивости мы уже только что показали. А суть тут в том, что понятие истинности (и как следствие доказуемости) в принципе не применимо к абсурдным утверждениям.

Это всё равно, что спрашивать «Когда вы перестали пить по утрам?» у человека, который в жизни в рот не брал. По сути, выражение Гёделя — не более чем слегка завуалированный парадокс лжеца, где утверждение эффективно отрицает само себя. Важный вывод из этих рассуждений заключается в том, что введение в рассуждение абсурдного утверждения не поможет ничего доказать или опровергнуть, кроме собственно абсурдности этого утверждения.

Вторая теорема Гёделя о неполноте

У того же Гёделя есть и другая теорема, утверждающая, что в любой непротиворечивой системе утверждений недоказуемо утверждение о её непротиворечивости. Для «доказательства» он использует то же самое абсурдное утверждение, которое мы разобрали ранее. Поэтому, вместо очередного опровержения некорректных рассуждений, давайте просто докажем утверждение о собственной непротиворечивости.

ложным является утверждение что. Смотреть фото ложным является утверждение что. Смотреть картинку ложным является утверждение что. Картинка про ложным является утверждение что. Фото ложным является утверждение что

Если утверждение «эта система утверждений корректна» ложно, то система утверждений не корректна, то есть противоречива. Если же это утверждение — правда, то система утверждений корректна, что не вызывает противоречий. Соответственно это утверждение не может быть ни чем иным как правдой.

Получается, что четырёхзначная логика, в отличие от классической, позволяет строить непротиворечивую, но при этом полную систему утверждений, позволяющую использовать её в качестве фундамента для математики. Ведь она позволяет однозначно выводить одно из четырёх возможных логических значений. А теоремы Гёделя просто показывают несостоятельность классической логики.

Разбиение множества по предикату

Поднимемся на уровень выше, к теории множеств, где мы можем образовывать подмножества используя произвольный предикат, то есть функцию, которая возвращает правду или ложь. Возьмём, например, предикат «стрижёт» и разделим всё население Земли на тех кто стрижёт сам себя и тех, кого стригут другие. Первых обозначим бритой рожицей так как они могут себе позволить стричься хоть каждый день. А вторых — заросшей, так как для них сходить к цирюльнику — это целая эпопея.

ложным является утверждение что. Смотреть фото ложным является утверждение что. Смотреть картинку ложным является утверждение что. Картинка про ложным является утверждение что. Фото ложным является утверждение что

Так как мы разделили всё население по предикату на два подмножества, то так же верны и утверждения, что объединение этих подмножеств равно всему населению планеты. А пересечение является пустым множеством, ибо никто не может и стричь себя сам, и не стричь одновременно.

Введение определений

Теперь давайте представим себе такого персонажа, который стрижёт всех и только тех жителей, кто не стригут себя сами. Назовём его Сантой и формализуем его определение в виде системы из 3 утверждений..

ложным является утверждение что. Смотреть фото ложным является утверждение что. Смотреть картинку ложным является утверждение что. Картинка про ложным является утверждение что. Фото ложным является утверждение что

Сначала мы утверждаем, что он принадлежит множеству населения Земли. Потом, что он стрижёт любого землянина, что не стрижёт себя сам. И наконец, он не стрижёт никого из тех, кто и сам себя не прочь постричь.

Но что за дела? Почему определение завёрнуто в жёлтый прямоугольник неопределённости? Как же так?

Парадокс брадобрея

Дело в том, что прежде чем вводить в рассуждения новое определение, необходимо доказать, что оно корректно, то есть описывает то, что действительно может существовать, а не является абсурдом. Давайте попробуем это сделать..

ложным является утверждение что. Смотреть фото ложным является утверждение что. Смотреть картинку ложным является утверждение что. Картинка про ложным является утверждение что. Фото ложным является утверждение что

Если любого, кто не стрижёт себя сам, стрижёт Санта, то сам Санта не может входить в это множество ибо тогда Санте пришлось бы стричь самого себя. С другой стороны, раз он не стрижёт никого из самостригущихся, значит сам он тоже не принадлежит к самостригущимся. Объединяя оба вывода, получаем, что… Санты не существует, как это ни печально. Однако, он должен существовать исходя из нашего определения.

Получается, что система из 3 утверждений входящих в определение Санты противоречиво само по себе и не может использоваться для введения такой сущности в рассуждения. Такое абсурдное определение называется «парадоксом брадобрея» и имеет множество различных вариаций. А важный вывод из него заключается в том, что не всё, что можно описать может действительно существовать. Поэтому вводя новые сущности всякий раз необходимо доказывать непротиворечивость их описания.

Несчётные множества

Давайте подумаем, что будет, если мы не будем отвергать абсурдные определения. Для этого рассмотрим теорему Кантора о несчётности вещественных чисел. Для наглядности, обозначим множество вещественных чисел как линейку, а множество натуральных как циферки в квадрате.

ложным является утверждение что. Смотреть фото ложным является утверждение что. Смотреть картинку ложным является утверждение что. Картинка про ложным является утверждение что. Фото ложным является утверждение что

Вкратце, доказательство Кантора выглядит так: предположим, что для любого вещественного числа существует соответствующее ему уникальное натуральное число. Теперь введём в рассмотрение Санту — некоторое вещественное число, которое по построению не соответствует ни одному натуральному. А в рамках исходной гипотезы, в которой мы не сомневаемся, пока она не опровергнута, его определение эквивалентно следующему: «Санта — это такое вещественное число, которое не равно… никакому вещественному числу».

Получается, что Санта сам не может быть вещественным числом. Однако, ранее мы постулировали, что такой Санта среди вещественных чисел есть. И тем самым, кстати, нарушили один из основных принципов доказательства от противного — недоказуемая посылка в нём может быть только одна — которая далее и опровергается. А в «доказательстве» Кантора их две — одна явная, а другая не очень.

Направления математики

Получившееся противоречие означает, что невозможно одновременное существование Санты и соответствия между нашими множествами. Чтобы его разрешить, можно, например, признать, что такой самоотрицающий себя Санта существовать не может, а значит множество вещественных чисел счётно и все бесконечности равны.

ложным является утверждение что. Смотреть фото ложным является утверждение что. Смотреть картинку ложным является утверждение что. Картинка про ложным является утверждение что. Фото ложным является утверждение что

Ну а можно заявить, что если мы смогли Санту описать, значит он существует. А следовательно не существует соответствия, и одна безконечность, внезапно, может быть больше другой безконечности. Как минимум на один элемент. А это открывает широкие горизонты для целого математического направления с ординалами, кардиналами и прочими классами. Именно так и поступил Кантор, а вслед за ним и вся формалистская школа математики, породив тем самым несчётное множество парадоксов.

Отмечу, однако, почему это тупиковый вектор развития. В окружающем нас мире всё конечно. Поэтому алгебра бесконечностей принципиально бесполезна с практической точки зрения. Так что её можно безболезненно удалить бритвой Оккама и получить стройную непротиворечивую математику не опирающуюся на абсурдные сущности.

Пересчитываем действительные числа

Ну ок, мы показали, что вещественные числа пересчитать всё же можно. Но как именно это сделать? Давайте сформулируем самый простой алгоритм..

ложным является утверждение что. Смотреть фото ложным является утверждение что. Смотреть картинку ложным является утверждение что. Картинка про ложным является утверждение что. Фото ложным является утверждение что

Возьмём пустой ряд вещественных чисел и начнём заполнять его так: берём случайное вещественное число и проверяем есть ли оно уже в нашем ряду. Если оно уже есть — генерируем новое. И так далее, пока не встретим число, которое ещё не посчитали. Добавляем его в конец ряда и всё по новой.

Понятно, что для произвольного вещественного числа вероятность получить именно его на очередной итерации бесконечно мала. Но так как у нас есть неограниченное число попыток, то математическое ожидание, что оно нам попадётся в ряду хотя бы раз, равно единице. А это значит, что для каждого вещественного числа неизбежно будет получен уникальный натуральный номер в ряду. А следовательно, все бесконечные множества равны между собой по своей мощности.

Проблема останова

Наконец, мы добрались до проблемы останова. Суть её заключается в том, чтобы написать такой анализатор, который бы для любого алгоритма мог сказать завершится тот когда-нибудь или же будет исполняться бесконечно долго. Сотню лет назад Алан Тьюринг доказал невозможность существования такого алгоритма. И я думаю вы уже понимаете каким вымышленным персонажем он для этого воспользовался.

ложным является утверждение что. Смотреть фото ложным является утверждение что. Смотреть картинку ложным является утверждение что. Картинка про ложным является утверждение что. Фото ложным является утверждение что

Итак, предположим, что такой анализатор существует и обозначим его знаком «стоп». Он принимает произвольный алгоритм и возвращает флаг истинности. Теперь напишем нашего Санту таким образом, что он вызывает анализатор на самом себе и поступает ровно противоположно его решению: уходит в бесконечную рекурсию, если анализатор говорит, что алгоритм останавливается, но успешно завершается, если анализатор говорит, что остановки не произойдёт.

Понятное дело, что анализатор на таком алгоритме не сможет вернуть ни правду, ни ложь, так как Санта сформулирован в форме абсурда. Значит такого анализатора не существует? Да нет же, существовать он может, но должен бросить ошибку, так же как и для любого другого некорректного кода. В данном же случае текст ошибки может быть примерно такой: «алгоритм не корректен, так как его поведение зависит от результата работы анализатора».

По сути, рассуждения Тьюринга говорят нам не о том, что анализатора быть не может, а то, что классической (бинарной) логики не достаточно для представления результата его работы — нужна как минимум троичная, в которой представим в том числе и вердикт о некорректности кода.

Проверка останова

Что ж, сформулируем простейший и максимально неэффективный анализатор останова. Для начала возьмём некоторый конечный объём памяти и заметим, что число возможных состояний этой памяти тоже конечно. А так как работа исполнителя целиком и полностью определяется состоянием памяти, то он неизбежно за конечное время придёт либо в терминирующее состояние, либо в одно из состояний, в котором он уже был, и соответственно пойдёт по уже проложенному пути и будет делать так бесконечно долго.

ложным является утверждение что. Смотреть фото ложным является утверждение что. Смотреть картинку ложным является утверждение что. Картинка про ложным является утверждение что. Фото ложным является утверждение что

Получается, всё, что нам нужно сделать — это исполнить алгоритм, на каждом шаге запоминая полное состояние памяти и сравнивая его со всеми предыдущими состояниями. Как только состояния совпадут — говорим, что алгоритм не останавливается.

Однако, машина Тьюринга, в отличие от любой реальной машины, обладает бесконечным объёмом памяти, что не позволяет вот так вот в лоб за конечное время проверить остановимость алгоритма. Тут уже потребуется анализ потока исполнения для ответа на вопрос: «окажется ли указатель исполнителя за пределами произвольно заданного диапазона памяти». Если ответ утвердительный, то по индукции следует, что алгоритм никогда не остановится. Если же отрицательный, то задача сводится к варианту с конечной памятью.

Можно ли написать такой анализатор, определяющий выход за границы памяти, — вопрос хороший и ответа на него у меня сейчас нет. Возможно именно вы сможете на него ответить? Только чур не ссылаться на Санту!

Резюме

На этом мы пока что остановимся и резюмируем сделанные выводы..

Самоотрицание само по себе не позволяет что-либо доказать или опровергнуть. Оно лишь показывает ограниченность классической логики, не позволяющей оперировать абсурдными утверждениями. А вот четырёхзначная логика позволяет. Так что в ней логические парадоксы в принципе не возникают, что делает её отличным кандидатом для непротиворечивого, но при этом полноценного фундамента математики, где все бесконечности равны, любое утверждение можно вывести, а любой алгоритм можно проанализировать. Но, к сожалению, математика как свернула не туда, так там до сих пор и буксует.

Чтиво по теме

И тут вы, возможно, спросите меня: «Ты что тут самый умный что ли? Математики думаешь всё это не продумали? Иди книжки почитай!». И тут я с вами соглашусь. Чтобы глубоко понять проблематику нужно ознакомиться с её рассмотрением с разных сторон. А не только лишь с одной, господствующей на данный момент, школой математики. Ведь она не единственная. И математики до сих пор не пришли к консенсусу. Предпочитая скорее прятаться от проблем классической логики, чем решать их. Поэтому могу порекомендовать следующие материалы по теме..

В работе Зенкина теорема Кантора рассматривается с несколько иных позиций, но результат такой же для неё плачевный. В работе Павлова подробно разбирается четырёхзначная логика и её соотнесение с классической и другими близкими типами логик. А в обзоре Макара Светлого вы можете проследить всю историю кризисов оснований математики.

Продолжение следует..

Что ж. Пишите в комментариях, как сильно я не прав. Ставьте лайк, если хотите добавки. Подписывайтесь на канал, чтобы её не пропустить. И конечно же, делитесь ссылкой со знакомыми математиками, пусть они тоже поугарают.

А на этом пока что всё. С вами был абсурдный программер Дмитрий Карловский.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *