луч а и луч б в электрике что это такое
Электрические лучи
Смотреть что такое «Электрические лучи» в других словарях:
ЭЛЕКТРИЧЕСКИЕ РАЗРЯДЫ В ГАЗАХ — прохождение электрич. тока через газовую среду, сопровождающееся изменением состояния газа. Многообразие условий, определяющих исходное состояние газа (состав, давление и т. д.), внеш. воздействий на газ, материалов, форм и расположения… … Физическая энциклопедия
Электрические измерительные аппараты — Э. измерительными аппаратами называют приборы и приспособления, служащие для измерения Э., а также и магнитных величин. Большая часть измерений сводится к определению силы тока, напряжения (разности потенциалов) и количества электричества.… … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона
АКТИНИЧЕСКИЕ ЛУЧИ — невидимые лучи солнечного спектра, обнаруживающее себя химическим действием. Словарь иностранных слов, вошедших в состав русского языка. Павленков Ф., 1907. актинические лучи [от гр. луч] – фиолетовые и ультрафиолетовые лучи, обладающие большой… … Словарь иностранных слов русского языка
Актинические лучи — А. лучами называются лучи, способные вызывать некоторые химические превращения (молекулярные изменения, соединения и разложения), а также электрические изменения в состоянии тел (потеря отрицательного заряда, положительная электризация).… … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона
Герца опыты — Теория электрических и магнитных явлений, созданная трудами лучших математиков первой половины настоящего столетия и до недавнего времени принимавшаяся почти всеми учеными, допускала в основе своей существование особых невесомых электрических и… … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона
Светорассеяние — [Светорассеяние этимологически то же, что рассеяние света, но последним именем, или диффузией света, называется незеркальное отражение света, как, напр., матовыми поверхностями тел. Ф. П.] (цветное), или дисперсия (Dispersion, Farbenzerstreung)… … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона
Рожанский Дмитрий Аполлинариевич — [20.8(1.9).1882, Киев, ‒ 27.9.1936, Ленинград], советский физик, член корреспондент АН СССР (1933). Окончил Петербургский университет (1904). В 1905‒06 работал в Гёттингене; с 1908 в Петербургском электротехническом институте. В 1911‒21 профессор … Большая советская энциклопедия
Рожанский — I Рожанский Дмитрий Аполлинариевич [20.8(1.9).1882, Киев, 27.9.1936, Ленинград], советский физик, член корреспондент АН СССР (1933). Окончил Петербургский университет (1904). В 1905 06 работал в Гёттингене; с 1908 в Петербургском… … Большая советская энциклопедия
Вортигонт — Двое вортигонтов атакуют игрока электричеством в Blue Shift Вортигонты (англ. Vortigaunts, ранее известные как рабы (англ. Alien slaves) раса разумных инопланетных существ из серии игр Half Life, обладающая способностями к безъязыковой… … Википедия
Луч в математике — определение, форма и свойства
Геометрия занимается изучением разных фигур и их свойств. К ним относятся квадрат, треугольник, круг, овал, цилиндр. Луч в математике — это такая прямая, у которой нет конца. Поэтому она считается бесконечной. С данным понятием впервые сталкиваются ученики начальной школы. Более подробно материал изучается в 5 классе. Для решения задач по заданной тематике изучаются плоскость, отрезок, биссектриса.
Трактовка понятий
Впервые термин «луч» использовал в 1833 году швейцарский учёный Якоб Штейнер. Для его определения потребуется на плоскости поставить точку. Из неё должна исходить часть прямой, которая состоит из множества точек, расположенных по одну сторону от первоначальной. Само понятие «точка» считается абстрактным объектом, который не имеет высоты, радиуса, длины, сторон, угла. В задачах важно её местоположение на плоскости либо полуплоскости.
На чертеже она обозначается заглавной латинской буквой. Чтобы различить несколько точек, на рисунке используется несколько букв. Можно вводить числовое обозначение. В отличие от луча, отрезок считается частью прямой, ограниченной двумя точками на концах. Множество точек образует линию, у которой нет толщины и ширины. На плоскости можно начертить следующие её виды:
Линии пересекаются, если имеют одну общую точку. Чтобы они были перпендикулярны друг другу, между ними должен образовываться угол в 90 градусов. При параллельности части прямой не могут скрещиваться.
К особым формам луча относится ломаная. Она состоит из последовательно соединенных отрезков (звенья) под углом, отличным от 180°. Смежные звенья находятся на разных прямых.
У ломаной есть вершины. Они могут обозначаться с помощью латинских заглавных букв. Их нельзя править на маленькие. Сама вершина считается точкой, откуда начинается одна ломаная и заканчивается другая. Основным примером замкнутой линии является многоугольник. Его стороны представлены в виде звеньев.
Описание лучей
В геометрических задачах встречаются дополнительные лучи. Чтобы их начертить, потребуется отобразить на плоскости прямую, разделённую точкой на две полупрямые. Каждая часть является дополнительной относительно другой. Свойства лучей:
Дополнительные лучи могут дополнять друг друга до прямой. Отдельно рассматриваются совпадающие лучи. Если их наложить друг на друга, они совпадут. Для них характерна равная длина.
Чтобы отметить лучи на рисунке, используются порядковые номера.
Незамкнутый открытый луч состоит из точек, находящихся по одну сторону относительно проведённой линии. Для его обозначения используется строчная латинская буква либо две заглавные. Одна точка является началом, а вторая размещается на самом луче. В основе такой фигуры находятся полупрямые. Если в условиях задачи дана линия, формула выглядит следующим образом: (АB). Отрезок записывается в квадратных скобках.
Принципы классификации
Так как луч является частью прямой, поэтому через любую его точку проводится множество прямых, но только через две несовпадающие проходит одна прямая. Луч можно изобразить в нескольких вариантах: пересечение, скрещивание и параллельность.
Чтобы задать луч на плоскости, используется линейное уравнение. Фигуры называются разными способами и с помощью знаков. Можно провести полупрямую «О». Её начальная точка считается исходной и другой не существует. Другой способ записи — использование нескольких букв в середине либо в иных частях линии. Если в задаче дана прямая, её можно обозначить двумя буквами, размещёнными в разных её частях, к примеру, (АB).
Третий метод обозначения: точка «О» находится с некоторым отступом от начала. Центральную часть можно назвать буквой К. В таком случае весь луч будет называться ОК. Если нужно начертить продолжение к прямой, понадобится отметить на чертеже линию и точку, которая будет считаться производной. С помощью последней фигуры делится первая на 2 линии, которые не пересекаются между собой. Чтобы обозначить продолжение, рисуется линия карандашом.
Она будет иметь общее начало с основополагающей, но не будет совпадать с ней. Из т. О проводится прямая, не располагающаяся на дополняющих, но имеющая с ними одно общее начало. На новом луче отмечается т. В. На продолжении лежит отрезок ОВ.
Неразвернутый угол является случаем луча. Если стороны первой фигуры представлены в виде дополнительных полупрямых одной прямой, тогда угол является развёрнутым. Его значение равняется 180 градусов. Если значение угла иное, тогда он неразвернутый.
Следует отличать геометрические лучи от световых.
В математике фигура представлена в виде линии, у которой нет ничего общего с энергией. Для световых лучей характерно несконцентрированное направление, дефракция (переломанный). Но при сильном потоке света наблюдается их чёткое направление.
Аксиомы и доказательства
Свойства лучей определяются аксиомами. Положение 1: на любом луче от начала можно отложить отрезок определённой длины, и только один.
Доказательство: если на линии от начала А отложить 2 равных отрезка АВ и АС, тогда точки С и В совпадут. В и А не лежат на прямой, а находятся с одной стороны от неё. Если отрезок АВ не пересекает эту прямую, тогда множество точек, лежащих с единой стороны от прямой, называется полуплоскостью. При доказательстве положения 1 следует ориентироваться на определение луча.
Аксиома: прямая разделяет плоскость на 2 полуплоскости. Следствие: если D и С находятся в различных полуплоскостях от прямой а, тогда отрезок DC пересекает а. Из этого вытекает теорема: A, B, O, C расположены на прямой а таким образом, что А и В находятся с одной стороны от т. О, т. С и В — с одной стороны от О. При этом А и С размещены с одной стороны от О.
Доказательство: нужно провести через О прямую b, которая отлична от а. Она будет разбивать плоскость на 2 полуплоскости. На одной из них находится т. В. Так как отрезки BC и AB не пересекают прямую b, поэтому точки А и С находятся в одной полуплоскости с В. Отрезок АС не пересекает b. На нём не находится т. О. От неё по одну сторону размещены т. А и С.
Предположение: если O, A, B, C принадлежат прямой а, при этом А находится между В и О, тогда А лежит между О и С. По одну сторону от О находятся три точки А, B и C.
Доказательство: так как по условию т. А находится между О и В, поэтому А и В лежат по одну сторону от О. По второму условию В и С лежат по эту же сторону от О. Исходя из теоремы 1, А, В и С лежат по одну сторону от т. О.
Теорема: если O, A, B, C принадлежат одной линии а, т. А лежит между В и О, а т. В между О и С, тогда В находится между А и С.
Доказательство: выдвигается предположение, что из условия теоремы заключение не следует. Точка В не находится между А и С. По свойству взаиморасположения A, B, C, точки А и С лежат по одну сторону от В. По предположению следует, что они лежат по одну сторону от О, либо A, C, O лежат по одну сторону от B. Это противоречит условию: О и С находятся по разные стороны от В, либо А и С размещены по иную сторону от В, в отличие от т. О.
Подобное противоречит условию принадлежности А отрезку ОВ. Такое противоречие показывает, что предположение о т. В, не лежащей между А и С, неверное. Следовательно, точка В находится между А и С, что доказывает теорему. При решении геометрических задач, связанных с плоскостью и фигурами на ней, учитываются основные теоремы, доказанные учеными за всю историю математики.