луч падает перпендикулярно поверхности воды чему равен угол преломления
Самостоятельная работа Преломление света 8 класс
Самостоятельная работа Преломление света 8 класс с ответами. Самостоятельная работа представлена в двух вариантах, в каждом варианте по 5 заданий.
Вариант 1
1. Луч падает перпендикулярно поверхности воды. Чему равен угол преломления?
2. Разность температур между незамерзшей водой и холодным воздухом создает рефракцию. Этому сопутствует легкая мгла и «дрожание» горизонта. Однажды датские полярники по вине рефракции чуть не убили собственную собаку, приняв ее за овцебыка. Какое явление лежит в основе рефракции?
3. Наблюдается ли рефракция на Луне?
4. Короче или длиннее кажется тело человека, стоящего вертикально в воде? Что является причиной такой иллюзии?
5. Вы оказались на необитаемом острове и решили подкрепиться рыбкой. Как надо целиться в рыбу, находящуюся в воде, чтобы не промахнуться: под нее, выше или прямо в рыбу?
Вариант 2
1. При каком условии наблюдается преломление?
2. При каких условиях угол падения может быть равен углу преломления?
3. Почему предметы, расположенные за костром, мы видим колеблющимися?
4. Почему бассейн, наполненный водой, на глаз кажется мельче, чем на самом деле?
5. Как меняется плотность атмосферы с высотой? Как это влияет на ход солнечных лучей?
Ответы на самостоятельную работу Преломление света 8 класс
Вариант 1
1. Угол преломления равен 0.
2. В основе рефракции лежит преломление световых лучей в земной атмосфере. Из-за ее неоднородности свет перемещается по ломаным линиям.
3. На Луне нет атмосферы, следовательно, рефракции нет.
4. Короче, так как происходит преломление света на границе раздела двух сред. Свет из менее плотной переходит в более плотную среду, следовательно, лучи начинают распространяться под меньшим углом.
5. Ниже, так как из-за преломления света рыба будет находиться выше.
Вариант 2
1. Преломление происходит в момент, когда световой луч падает на границу раздела двух сред.
2. Когда луч падает перпендикулярно поверхности.
3. Меняется температура воздуха. Показатель преломления воздуха над костром изменяется, изменяется ход лучей.
4. Из-за преломления света глубина бассейна всегда больше кажущейся.
5. Плотность атмосферы с высотой уменьшается. Изменяется показатель преломления воздуха, луч света начинает отклоняться, траектория движения искривляется.
Преломление света.
Автор — профессиональный репетитор, автор учебных пособий для подготовки к ЕГЭ Игорь Вячеславович Яковлев
Темы кодификатора ЕГЭ: закон преломления света, полное внутреннее отражение.
Закон преломления (частный случай).
Мы начнём с частного случая, когда одна из сред является воздухом. Именно такая ситуация присутствует в подавляющем большинстве задач. Мы обсудим соответствующий частный случай закона преломления, а уж затем дадим самую общую его формулировку.
Рис. 1. Преломление луча на границе «воздух–среда» |
Закон преломления (переход «воздух–среда»).
1) Падающий луч, преломлённый луч и нормаль к поверхности, проведённая в точке падения, лежат в одной плоскости.
2) Отношение синуса угла падения к синусу угла преломления равно показателю преломления среды:
Обратимость световых лучей.
Теперь рассмотрим обратный ход луча: его преломление при переходе из среды в воздух. Здесь нам окажет помощь следующий полезный принцип.
Принцип обратимости световых лучей. Траектория луча не зависит от того, в прямом или обратном направлении распространяется луч. Двигаясь в обратном направлении, луч пойдёт в точности по тому же пути, что и в прямом направлении.
Согласно принципу обратимости, при переходе из среды в воздух луч пойдёт по той же самой траектории, что и при соответствующем переходе из воздуха в среду (рис. 2 ) Единственное отличие рис. 2 от рис. 1 состоит в том, что направление луча поменялось на противоположное.
Рис. 2. Преломление луча на границе «среда–воздух» |
Закон преломления (общий случай).
Рис. 3. |
Наоборот, переходя из оптически более плотной среды в оптически менее плотную, луч отклоняется дальше от нормали (рис. 4 ). Здесь угол падения меньше угла преломления:
Рис. 4. |
Закон преломления.
1) Падающий луч, преломлённый луч и нормаль к поверхности раздела сред, проведённая в точке падения, лежат в одной плоскости.
2) Отношение синуса угла падения к синусу угла преломления равно отношению показателя преломления второй среды к показателю преломления первой среды:
Полное внутреннее отражение.
Рис. 5. Полное внутреннее отражение |
При дальнейшем увеличении угла падения преломлённый луч и подавно будет отсутствовать.
Величину легко найти из закона преломления. Имеем:
Так, для воды предельный угол полного отражения равен:
Важнейшим техническим применением полного внутреннего отражения является волоконная оптика. Световые лучи, запущенные внутрь оптоволоконного кабеля (световода) почти параллельно его оси, падают на поверхность под большими углами и целиком, без потери энергии отражаются назад внутрь кабеля. Многократно отражаясь, лучи идут всё дальше и дальше, перенося энергию на значительное расстояние. Волоконно-оптическая связь применяется, например, в сетях кабельного телевидения и высокоскоростного доступа в Интернет.
Преломление света. Закон преломления света
Содержание
Из прошлых уроков вы уже знаете, что в однородной среде свет распространяется прямолинейно. Но в жизни много ситуаций, когда свет проходит через разные вещества до того, как достигнет наших глаз.
Например, через оконные стекла мы отлично видим все, что происходит на улице. А через стекла в межкомнатных дверях мы можем видеть только размытые силуэты того, что находится за дверью. Тот же самый пример можно привести и с прозрачной и мутной водой.
Значит, получаемое нашими глазами изображение как-то связано с тем, через какие среды проходит свет. Двигаясь прямолинейно в одной среде, он переходит в другую и снова двигается прямолинейно. Что же происходит при этом переходе из одной среды в другую?
Так, вам предстоит узнать новое понятие – преломление света. В ходе данного урока вы узнаете закономерности этого явления, рассмотрите различные опыты и научитесь применять полученные знания для решения задач.
Явление преломления света
Рассмотрим простой опыт. Для него нам понадобится прозрачный стакан с водой и обычный карандаш (рисунок 1).
Сначала опустим карандаш в воду вертикально (рисунок 1, а). Части карандаша в воздухе и в воде не изменились.
А теперь поменяем угол наклона карандаша (рисунок 2, б). Мы увидим интересную картинку. Нам кажется, что карандаш переломился на границе воды и воздуха.
Что произошло? Мы видим карандаш, потому что на него падает свет от какого-то источника. Его лучи отражаются от карандаша и попадают нам в глаза. Когда мы опустили карандаш в воду под каким-то углом, световые лучи дошли до наших глаз не только через воздух, но еще и через воду в стакане. При этом они поменяли направление своего распространения при переходе из одной среды в другую. В таком случае говорят, что свет преломился.
Преломление света – это явление изменения направления распространения света при переходе из одной среды в другую.
Но, если свет преломляется при переходе из одной среды в другую, почему на рисунке 1 (а) мы все равно видим карандаш без изменений? Чтобы разобраться с этим вопросом, нам необходимо более подробно изучить природу преломления света.
Скорость света и оптическая плотность среды
Свет распространяется в пространстве с определенной скоростью. Эта скорость настолько велика, что нам кажется, будто свет появляется мгновенно. Например, когда в темной комнате мы щелкаем переключателем, и включается свет.
Ученые не только рассчитали значение этой скорости, но и доказали, что скорость света различается в разных средах (таблица 1).
Значения скорости света в вакууме и воздухе практически не отличаются, поэтому используют одно значение – $300 000 \frac<км><с>$. Эта величина обозначается буквой $c$.
В других же средах наблюдается значительная разница в значениях скорости. Например, в воде скорость света меньше, чем в воздухе. При этом говорят, что вода является оптически более плотной средой, чем воздух.
Оптическая плотность – это величина, которая характеризует различные среды в зависимости от значения скорости распространения света в них.
Если пучок света падает на поверхность, разделяющую две прозрачные среды с разной оптической плотностью, то часть света отразится от этой поверхности, а другая часть проникнет во вторую среду. При этом луч света изменит свое направление – происходит преломление света.
Схема преломления светового луча. Угол преломления
Рассмотрим преломление света более подробно (рисунок 2).
Перечислим элементы, обозначенные на рисунке 2:
Угол преломления – это угол между перпендикуляром, опущенным к границе раздела двух сред в точке падения светового луча, и преломленным лучом.
Теперь на поверхность воды с помощью маленького фонарика направим пучок света. Сделаем это таким образом, чтобы пучок света падал под каким-то углом.
Мы увидим, как луч поменяет свое направление на границе воздуха и воды. При этом угол преломления заметно меньше угла падения ($\gamma_1 \alpha_2$).
Вода – более плотная оптическая среда, чем воздух. Из всего этого мы можем сделать следующие выводы:
Если в ходе опытов мы будем менять угол падения, то заметим, что угол преломления тоже будет изменяться. При этом вышеописанные нами закономерности будут исполняться.
Показатель преломления
Давайте выясним, как именно углы падения и преломления связаны друг с другом. Рассматривать будем луч света падающий из воздуха в воду.
При увеличении угла падения, будет увеличиваться угол преломления (рисунок 4). Но отношение между этими углами ($\frac<\alpha><\gamma>$) не будет постоянным.
Постоянным будет оставаться другое отношение этих углов – отношение их синусов:
$\frac<\sin 30 \degree> <\sin 23 \degree>= \frac<\sin 45 \degree> <\sin 33 \degree>= \frac<\sin 60 \degree> <\sin 42 \degree>\approx 1.33$.
Полученное число (1.3) называют относительным показателем преломления. Обозначают эту величину буквой $n_<21>$.
Так, для любой пары веществ с разными оптическими плотностями можно записать:
Чем больше относительный показатель преломления, тем сильнее преломляется световой луч при переходе из одной среды в другую.
В чем физический смысл этой величины? Ранее мы говорили, что оптическая плотность характеризует вещество по скорости распространения света в нем. Показатель преломления делает то же самое.
Относительный показатель преломления – это величина, показывающая, во сколько раз скорость света в первой по ходу луча среде отличается от скорости распространения света во второй среде:
$n_ <21>= \frac<\upsilon_1><\upsilon_2>$.
Если луч света падает из вакуума или воздуха в какое-то вещество, то используется еще одна величина – абсолютный показатель преломления.
Вещество | $n$ |
Воздух | 1.00 |
Лед | 1.31 |
Вода | 1.33 |
Спирт | 1.36 |
Стекло (обычное) | 1.50 |
Стекло (оптическое) | 1.47 – 2.04 |
Рубин | 1.76 |
Алмаз | 2.42 |
Таблица 2. Абсолютные показатели преломления света различных веществ
Здесь мы вернемся к вопросу о том, почему на рисунке 1 (а) мы не видим преломления.
Если падающий луч падает перпендикулярно на границу раздела двух сред, то он не испытывает преломления.
Закон преломления света
Итак, преломление света происходит по определенному закону.
Закон преломления света:
падающий и преломленный лучи и перпендикуляр, проведенный к границе раздела двух сред в точке падения луча, лежат в одной плоскости. При этом отношение синуса угла падения к синусу угла преломления – постоянная величина для двух сред:
$\frac<\sin \alpha> <\sin \gamma>= \frac= n_<21>$.
Мнимое изображение, образованное преломлением света. Призмы
Преломление света, как и отражение света плоским зеркалом, создает “кажущееся” изменение положение источника света. Мы наблюдали такое изменение в самом первом опыте этого урока на рисунке 1, б.
Но, дело в том, что мнимое положение источника света в случае преломления будет различным для лучей, падающих на границу раздела двух сред под разными углами. Поэтому мнимое положение источника света при преломлении обычно подробно не рассматривают.
Тем не менее, мы часто замечаем эти изменения. Например, в прозрачной воде в закрытых водоемах или в море кажется, что предметы, лежащие на дне и находящиеся в толще воды, находятся на другом расстоянии от нас, чем они есть на самом деле.
Рассмотрим наглядный опыт с монеткой (рисунок 5).
Возьмем неглубокую широкую чашку и положим на ее дно монетку. Выберем такое положение для наблюдения, чтобы она была не видна (рисунок 5, а).
Оставаясь в этой же точке наблюдения, нальем в чашку воду. Теперь монета стала видна (рисунок 5, б). То есть, мы видим не саму монету, а ее мнимое изображение, образованное преломлением света.
В различных оптических приборах используют эти особенности преломления. Часто свет проходит сквозь тело, имеющее форму призмы (рисунок 6, а).
Световой луч, падающий на боковую грань призмы дважды преломляется (рисунок 6, б): при входе в призму и при выходе из нее. Такой луч на выходе из призмы будет отклоняться к основанию треугольника.
В оптических приборах используют не просто призмы, но и их различные сочетания. Например, на рисунке 7 изображены 3 коробки, в которых находятся треугольные призмы.
Вы можете оценить, как при разных положениях призм изменяется ход лучей на выходе из коробки. При этом падающие лучи во всех трех случаях (а, б, в) были параллельны и имели одинаковое направление.
Примеры задач
Дано:
$\alpha = 30 \degree$
$\gamma = 45 \degree$
$n_2 = 1$
$c = 3 \cdot 10^8 \frac<м><с>$
Посмотреть решение и ответ
Решение:
По определению абсолютного показателя преломления для скипидара мы можем записать:
$n_1 = \frac
При решении задачи мы будем использовать рисунок 9.
Теперь запишем условие задачи и решим ее.
Дано:
$n_1 = 1$
$n_2 = 1.73$
$\beta = 60 \degree$
Посмотреть решение и ответ
Решение:
По закону отражения света:
$\alpha = \beta = 60 \degree$.
Условие задачи дает понять, что в глаз наблюдателя попадает луч, который падает перпендикулярно границе раздела двух сред. В таком случае, преломление наблюдаться не будет. Тем не менее, как и в настоящей жизни, мы все равно увидим преломленное изображение источника света. Он будет казаться ближе. В ходе решения этой задачи вы узнаете, почему так происходит.
Для начала рассмотрим рисунок 10.
Теперь мы можем записать условие задачи и решить ее.
Дано:
$H = 3 \space м$
$n_1 = 1.33$
$n_2 = 1$
Посмотреть решение и ответ
Решение:
$h = \frac<3 \space м> <1.33>\approx 2.3 \space м$.