молниезащита что это такое
Что нужно, чтобы обезопасить дом от молнии?
Достижения современной техники способны сделать жизнь в частном доме по-настоящему комфортной. Сейчас нет необходимости топить печь, чтобы в доме стало теплее, и греть воду, чтобы помыться: в домах устанавливают котлы отопления и бойлеры, холодильник и стиральная машина. Во многих домах есть кондиционеры. И, конечно, почти в каждом частном доме сегодня есть телевизор…
Увы, всей этой техники легко лишиться.
А стоит ли опасаться молний?
Может показаться, что попадание молнии – редчайшая ситуация. Но это не так. Каждый год это явление природы становится причиной не менее чем 500 пожаров. А сколько приборов ежегодно выходит из строя под ее воздействием! Это влечет за собой соответствующие расходы – россияне тратят до 100 миллионов рублей на то, чтобы устранить ущерб, нанесенный таким электрическим разрядом.
А ведь затрат так легко было бы избежать! Достаточно приобрести качественную систему молниезащиты, которая предотвратит случайное попадание молнии в ваш дом и защитит дорогое оборудование от перепадов напряжения.
Компания ДКС – признанный производитель готовых комплексных решений. Для защиты частного дома компания предлагает комплекты для внешней молниезащиты, выпускаемой под брендом «Jupiter». Задача системы «Jupiter» – предотвратить попадание молнии в дом, отвести ее в землю и рассеять. Кроме того, система предотвращает перенапряжение, уравнивая потенциалы между проводящими ток элементами, расположенными на частной территории.
Система внешней молниезащиты
Какова задача внешней молниезащиты? Такие системы защищают от возгорания, которое может возникнуть из-за попадания молнии в объект. Впрочем, для некоторых зданий разряд молнии не опасен – если кровля выполнена из стального (толщина не менее 4 мм), медного (толщина не менее 5 мм, алюминиевого листа (толщина 7 мм), таким зданиям не нужна специальная защита.
Но чаще всего толщина металлической черепицы или профиля – меньше, поэтому большинству зданий дополнительная защита все-таки требуется.
Внешняя молниезащита состоит из следующих элементов:
Чаще всего молниеотводом служит молниеприемная сетка или трос. Материал для изготовления сетки – проволока из устойчивых к коррозии металлов. Например, алюминия, меди, нержавеющей стали, или стали, защищенной методом горячего цинкования.
УЗИП или Внутренняя молниезащита
Защищаем частный дом от молнии
ДКС предлагает уже готовый комплект, в который входит все необходимое для молниезащиты частного дома – даже держатели и соединительные элементы. Монтаж при желании можно произвести самостоятельно. Для этого потребуется:
1. Установить молниеприемную сетку
Для этого потребуется стальной пруток (минимальный диаметр – 8 мм). Пруток нужно уложить по кровле таким образом, чтобы получились квадраты (сторона 12 м2). Если общая площадь кровли вашего дома меньше 12 м2, то прутки достаточно зафиксировать по краям фасада и вдоль конька кровли.
Важно, чтобы узлы получившейся сетки были соединены электрическим контактом с помощью болтовых соединителей. При необходимости можно прибегнуть и к сварному соединению, но сварка повреждает антикоррозионное покрытие, что негативно влияет на срок службы.
Для крепления сетки на кровле нужно использовать пластиковые или металлические держатели. Для плоских кровель подходит пластиковый вариант, а для скатных – металлический. Шаг установки держателей – не более 1 м.
Выступающие элементы кровли нужно присоединить к молниеприемной сетке. Если выступают неметаллические элементы, нужно будет дополнительно установить молниеприемники. При этом зона защиты молниеприемных мачт – конус, вершина которого совмещена с верхней точкой молниеприемника.
2. Установить токоотводы
Токоотводы – это опуски к заземлителя от молниеприемника. Они изготавливаются из полосы или прутка-катанки и закрепляются на фасаде (для этого применяются держатели – на каждый метр нужно не менее 1 штуки).
Токоотводы нужно расположить так, чтобы расстояние между землей и точкой поражения было минимальным. Ток при этом должен растекаться по нескольким путям. Для этого токоотводы обычно располагаются по периметру здания и углам (не менее 1 штуки на 25 метров).
В целях безопасности токоотводы должны располагаться вдали от дверей, окон и проходных зон. Если фасад подвержен возгоранию, расстояние от токоотвода до него должно составлять не менее 10 см.
Спустите токоотвод в землю и прикрепите к контуру зазмеления с помощью болтовых соединителей. Не забудьте про антикоррозионную ленту – ей надо будет защитить места ввода токоотводов в землю.
Система «Jupiter» для молниезащиты, заземления и уравнивания потенциалов от ДКС – это надежная защита вашего дома. И не только дома! Наши решения могут применяться для защиты любых объектов.
Преимущества системы молниезащиты от ДКС:
Молниезащита. Виды, характеристики, назначение и доказательство необходимости
Введение
Вопрос защиты от прямых ударов молнии становится актуальнее с каждым днем. Согласно прогнозам, увеличение числа гроз (грозовой активности) связано с потеплением климата и растет на 10 % на каждый градус, (по другим данным — увеличивается на 12 ±5 % на каждый градус) глобального потепления и в итоге возрастет примерно на 50 % в течение этого столетия.
Опасность молнии и необходимость защиты от нее людям известна с древности. Если ещё в относительно недавние времена основной опасностью удара молнии были пожары и физические повреждения зданий, вызванные ее термическим и механическим воздействием, то развитие электронной техники и всеобщая цифровизация жизни закономерно ставят дополнительный вопрос защиты электронной аппаратуры от импульсных перенапряжений, вызванных воздействием молнии.
Статистика
Каждый такой инцидент — не просто несчастный случай, но ещё и дополнительные расходы как владельцев пострадавших объектов (в большинстве случаев значительно превышающие стоимость системы молниезащиты), так и средств федерального и областных бюджетов.
В грозовой период новости пестрят информацией о погибших и пострадавших от удара молнии. К примеру, только в 2020 году таких случаев насчитывается более 27, в 2021 году — уже 5. Молния не щадит и домашних животных — на фермах, в конюшнях и пасущихся в поле. Только за 2020 год в разных регионах России погибли более 100 животных.
Необходимость молниезащиты
Наиболее эффективным способом борьбы с прямым ударом молнии и ее вторичными проявлениями было и остается применение систем молниезащиты, назначение которых — переориентирование от защищаемого объекта и непосредственный прием прямого разряда, распределение и рассеяние тока молнии в земле. Они состоят из внешней молниезащиты или молниеотвода, включающего в себя молниеприемник, токоотвод и систему заземления, и внутренней — УЗИП, предупреждающие прорыв тока молнии в объект.
Необходимость устройства молниезащиты зданий, сооружений и оборудования определены Федеральным законом от 22.07. 2008 № 123-ФЗ «Технический регламент о требованиях пожарной безопасности» как один из способов предупреждения пожаров и иными законодательными нормами Российской Федерации в области пожарной безопасности.
Традиционно для молниезащиты (грозозащиты) использовались проверенные практикой классические стержневые и тросовые молниеотводы, а также молниеприемная сетка.
Немного истории
Сегодня считается, что молниеотвод изобрел Бенджамин Франклин. Более 250 лет назад, в 1752 году, он экспериментально доказал электрическую природу молнии и предложил способ защиты от нее с помощью заземленного металлического стержня.
Самый старый в мире молниеотвод, из известных сохранившихся, находится в России, на построенной в первой половине 18-го века знаменитой Невьянской башне в городе Невьянск Свердловской области.
Молниеотвод на Невьянской башне
На вершине башни расположен заземленный, через каркас здания, металлический шпиль с покрытым шипами металлическим шаром и расположенным чуть ниже флюгером, на котором выбит дворянский герб Демидовых. Разные источники называют даты окончания постройки башни между 1721 и 1742 годами, то есть, как минимум за 10 лет до изобретения молниеотвода Франклином.
Действующие нормативы
На сегодняшний день в России действуют три основных нормативных документа по традиционной или классической/пассивной молниезащите:
Совместное применение последних двух наиболее часто используемых в практике современной молниезащиты определено письмом Ростехнадзора от 01.12.2004 № 10-03-04/182. Этими нормативными документами определен порядок проектирования, монтажа, эксплуатации и технического обслуживания классических систем пассивной молниезащиты — тросовых, стержневых и сетчатых.
Важнейшей характеристикой любых систем молниезащиты является надежность защиты от прямого удара молнии, то есть величина, определяемая как 1-Р, где Р — вероятность прорыва в процентах прямого удара молнии к объекту, находящемуся в пределах зоны защиты молниеотвода.
Таблица 1. Надежность защиты от прямого удара молнии определена СО 153-34.21.122-2003
Уровень защиты | Надежность защиты |
---|---|
I | 0,98 |
II | 0,95 |
III | 0,90 |
IV | 0,80 |
Зоны защиты классических молниеотводов
Наиболее распространены в мировой практике стержневые молниеотводы, отлично защищающие различные объекты на протяжении более чем 260 лет. Зоной защиты одиночного стержневого молниеотвода, согласно РД 34.21.122-87 и СО 153-34.21.122-2003 является конус с прямолинейной образующей. Вершина конуса находится на оси молниеотвода и расположена ниже вершины молниеприемника.
Размеры зоны защиты (высота и радиус защиты на уровне земли) зависят от заданной надежности защиты и от высоты молниеотвода. Добавим, что эта зависимость — линейная (см. схему ниже).
Зона защиты стержневого молниеотвода
Объект считается защищенным с заданной надежностью от прямого удара молнии, если целиком располагается внутри зоны защиты молниеотвода.
Объект полностью находится в зоне защиты молниеотвода. Фронтальная и горизонтальная проекции
Зона защиты одиночного тросового молниеотвода в данных нормативах рассчитывается как зона защиты большого количества стержневых молниеотводов, расположенных в линию заданной длины.
Кроме того, в СО 153-34.21.122-2003 определена возможность проектирования зон защиты молниеотводов по защитному углу или методом катящейся сферы согласно стандарту Международной электротехнической комиссии (IEC 62305) при условии, что расчетные требования Международной электротехнической комиссии оказываются более жесткими. При этом, в отличие от РД 34.21.122-87 и СО 153-34.21.122-2003, высота молниеотвода определяется от горизонтальной поверхности, которая будет защищена.
Активные молниеприемники МОЭС
В последние 25 лет стали популярны так называемые «активные» молниеприемники, обладающие более высокой степенью надежности и расширенной зоной защиты.
Для справки
Образование молнии начинается с формирования нисходящего от облака в направлении Земли лидера, представляющего собой проводящий плазменный канал. В настоящее время считается, что зарождение лидера в грозовом облаке не зависит от наличия на поверхности земли каких-либо объектов (неровностей рельефа, строительных конструкций и т. п.).
Продвигающийся к земле нисходящий ступенчатый лидер молнии инициирует появление и развитие направленных к грозовому облаку встречных (восходящих) лидеров как с наземных объектов: элементов крыши, архитектурных форм, оборудования на крыше и стенах и т. п., так и с установленных молниеприемников. Соприкосновение одного из них с нисходящим лидером определяет место удара молнии в землю или какой-либо объект.
Исходя из этого, роль системы молниезащиты, с точки зрения развития восходящего лидера, заключается в формировании устойчивого восходящего лидера с вершины молниеприемника раньше, чем с любых элементов наземного объекта. Являясь основным элементом системы молниезащиты, в функцию которого как раз и входит инициация и развитие устойчивого восходящего лидера ранее, чем от элементов объекта, молниеприемник должен создавать для этого оптимальные условия. Известно, что в условиях конкурирующего развития восходящих лидеров от элементов объекта и молниеприемников, более ранний устойчивый лидер подавляет возникновение остальных. Момент начала формирования на вершине молниеприемника восходящего лидера соответствует началу ориентировки молнии к молниеприемнику. Задачу опережающего формирования восходящего лидера от молниеприемника ранее чем от элементов защищаемого объекта с успехом решают системы защиты от прямого удара молнии с использованием молниеприемников с опережающей эмиссией стримера или, если кратко, МОЭС (англ. ESEAT — Early streamer emission air terminal). Другое распространенное название в России — активный молниеприемник.
Принцип действия МОЭС. Кратко
Рассмотрим принцип действия МОЭС на примере молниеприемников Forend производства турецкой компании Forend Elektrik A. S. В этом случае основой МОЭС является генератор высоковольтных импульсов, расположенный в корпусе с острием. Такое устройство монтируются на здании, сооружении или отдельно стоящей мачте и создает зону защиты от прямого удара молнии для всех объектов, в том числе, антенн и архитектурно-ландшафтных объектов кровли.
При возникновении определенных условий за счет разницы потенциалов между нисходящим лидером и поверхностью земли, генератор начинает вырабатывать высоковольтные импульсы. Как следствие, за доли секунды до разряда молнии на острие молниеприемника начинается эмиссия заряженных частиц и возникает стримерная вспышка, образующая встречный восходящий разряд — лидер с зарядом, противоположным заряду грозового облака. При этом для работы генератора не требуется использование внешнего источника питания. В ряде моделей МОЭС использованы поддерживающие ионизацию активные и пассивные электроды.
За счет принудительной генерации, опережающей стримерной вспышки и формирования восходящего лидера, увеличивается эффективная высота МОЭС по сравнению с классическим пассивным молниеприемником, в результате чего перехват нисходящего лидера молнии осуществляется раньше. Как следствие, увеличивается размер зоны защиты наземных объектов. В результате, при прочих равных, с классическими «пассивными» системами, условиях, удается обойтись меньшим количеством молниеприемников и токоотводов и/или меньшей высотой установки МОЭС.
Элементы системы молниезащиты
Система молниезащиты с МОЭС аналогична классическим пассивным системам и включает в себя элементы, указанные на рисунке ниже.
Элементы системы молниезащиты и защищаемого объекта
Примечание
Соединение токоотвод-заземлитель, а также горизонтального и вертикального заземлителей должно выполняться в смотровом (инспекционном) колодце.
Технические характеристики МОЭС
Корпус активной молниезащиты, как правило, изготовлен из нержавеющей стали, что позволяет обеспечить устойчивость к коррозии. Аэродинамическая конструкция МОЭС позволяет, как и классическим стержневым молниеприемникам, с успехом противостоять давлению ветра при грозе.
Разные типы корпусов МОЭС на примере молниеприемников Forend
Зоны защиты МОЭС
Основной характеристикой МОЭС является время опережения — ΔT, измеряемая в микросекундах. Другими словами, это разница во времени инициирования устойчивого восходящего лидера от МОЭС ранее, чем от «пассивного» молниеприемника аналогичной высоты. Этот параметр определяется экспериментально для каждого типа молниеприемника при моделировании реальных условий грозовой деятельности в лаборатории высокого напряжения.
Выбор конкретной модели МОЭС зависит от характеристик защищаемого объекта, требуемого уровня защиты, радиуса зоны защиты и высоты установки молниеприемника. Радиус (Rp) защиты МОЭС зависит от времени опережения (ΔT) и высоты (h) его установки.
Таблица 2. Зависимость радиуса защиты МОЭС от основных его характеристик
Rp, м | T= 30 мкс | T = 45 мкс | T = 60 мкс | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
h, м | уровень 1 | уровень 2 | уровень 3 | уровень 4 | уровень 1 | уровень 2 | уровень 3 | уровень 4 | уровень 1 | уровень 2 | уровень 3 | уровень 4 |
2 | 19 | 22 | 25 | 28 | 25 | 28 | 32 | 36 | 31 | 35 | 39 | 43 |
4 | 38 | 44 | 51 | 57 | 51 | 57 | 64 | 72 | 63 | 69 | 78 | 85 |
5 | 48 | 55 | 63 | 71 | 63 | 71 | 81 | 89 | 79 | 86 | 97 | 107 |
6 | 48 | 55 | 64 | 72 | 63 | 71 | 81 | 90 | 79 | 87 | 97 | 107 |
8 | 49 | 56 | 65 | 73 | 64 | 72 | 82 | 91 | 79 | 87 | 98 | 108 |
10 | 49 | 57 | 66 | 75 | 64 | 72 | 83 | 92 | 79 | 88 | 99 | 109 |
20 | 50 | 59 | 71 | 81 | 65 | 74 | 86 | 97 | 80 | 89 | 102 | 113 |
30 | 50 | 60 | 73 | 85 | 65 | 75 | 89 | 101 | 80 | 90 | 104 | 116 |
60 | 50 | 60 | 75 | 90 | 65 | 75 | 90 | 105 | 80 | 90 | 105 | 120 |
Как видно из приведенной таблицы, оптимальным, с точки зрения размеров зоны защиты и финансовых затрат, является установка МОЭС на высоте 6 метров над самой верхней точки защищаемого объекта. Радиус защиты, который в отдельных случаях может доходить до 107 метров, МОЭС позволяет одним молниеприемником обеспечить защиту площади до 36 тыс. кв. м с большей надежностью, чем классические виды пассивных молниеотводов. При необходимости защиты здания большей площади можно использовать 2-3 таких молниеприемника.
Количество молниеприемников
Сравним зоны защиты МОЭС Forend EU (ΔT=60 мкс) с зоной защиты стержневого молниеотвода. Радиус защиты данного устройства на 6-метровой мачте составляет 97 метров для III уровня защиты (наиболее распространен). В то же время рассчитанный по защитному углу стандарта IEC 62305-3:2010 для стержневого молниеприемника той же высоты (высота мачты+высота корпуса МОЭС=6,5 метров) радиус зоны защиты составит 15,3 метра (угол при вершине α=67 о ).
Для защиты здания размерами 48×180 метров необходимо использовать либо один расположенный в центре крыши здания активный молниеприемник, либо двадцать классических стержневых молниеприемников той же высоты.
Схема соотношения активной молниезащиты (слева) к пассивной (справа)
Еще более наглядно выглядит пример защиты нескольких близко расположенных зданий. Так, для защиты сооружений, стоящих неподалёку друг от друга, размеры одного из которых 48×90, а другого — 48×160, достаточно всего одного МОЭС типа Forend EU либо тридцать восемь классических стержневых молниеприемников той же высоты.
Активная защита двух близкорасположенных зданий в сравнении с пассивной
Размеры зоны защиты МОЭС позволяют уменьшить по сравнению с классическими пассивными системами молниезащиты общее количество молниеприемников на протяженных территориях и крупных объектах, а также снизить объем и общую стоимость материалов и работ при их возведении и ежегодном техническом обслуживании.
Перспективы
В конце 2020 года принят межгосударственный стандарт по системам молниезащиты с опережающей эмиссией стримера — ГОСТ 34696-2020 «Системы молниезащиты с опережающей эмиссией стримера. Технические требования и методы испытаний», определяющий порядок применения указанных систем. Есть надежда, что данный норматив вскоре будет введен в действие на территории России.
В настоящее время компанией «Электра», как одной из разработчиков ГОСТ 34696-2020, создана «Инструкция по защите от прямого удара молнии зданий, сооружений и открытых территорий системами с опережающей эмиссией стримера. Проектирование, монтаж, эксплуатация и техническое обслуживание». Документ представляет собой переработанный и дополненный собственный аутентичный технический перевод на русский язык стандарта Франции NF C 17-102 (редакция от сентября 2011 года) с французского и английского языков. Одновременно использованы применимые для МОЭС общие положения, термины, определения, требования и методы испытаний из государственных стандартов ГОСТ Р, распространяющихся на классические пассивные системы молниезащиты.
Применение упомянутой выше инструкции на территории Российской Федерации рекомендовано письмом СЦНТИ РЭА Министерства энергетики Российской Федерации от 22.09.2020 № 46.
Оптимальное решение
При проектировании молниезащиты необходимо сочетание эффективности защиты и экономичности проекта. При этом финансовая составляющая зачастую наиболее важна для заказчика, и является определяющим параметром в выборе между различными проектными решениями при прочих равных условиях.
Оптимальный выбор молниеприемников и их расположение на защищаемом объекте позволит также снизить затраты на прочие материалы (токоотводы в первую очередь) и земляные работы при устройстве заземления молниезащиты. Так, для отвода тока молнии в случае применения МОЭС необходимо всего два токоотвода на каждый из них. В то же время, при использовании классических пассивных молниеприемников, большее количество вертикальных, расположенных по стенам здания, токоотводов и грамотная конструкция заземлителей способствует более равномерному распределению тока молнии и стабильности электромагнитной обстановки внутри здания.
Безусловно, молниеприемники МОЭС не смогут полностью заменить традиционные, проверенные сотней лет, стержневые и тросовые молниеотводы. Оба продукта должны сосуществовать одновременно, а применение того или иного должно обуславливаться, прежде всего, эффективностью и целесообразностью финансовых затрат на защиту от риска прямого удара молнии.
Источник: Компания «Электра»
Устройство и требования к молниезащите зданий и сооружений
Молниезащита зданий и сооружений — редкая система на крышах новых и современных домов. Это связано с уверенностью человека, что разряд молнии ударит куда угодно, только не рядом.
При попадании молнии в крышу, трубы и другие возвышающиеся конструкции придомовых территорий возникает грозовое перенапряжение и электромагнитные импульсы, которые создают угрозу любым электрическим приборам, включенным в электрическую сеть переменного тока.
Особенности системы молниезащиты
Молниезащита объекта — комплекс мероприятий и устройств, которые способны защитить отдельно стоящие здания и сооружения от ударов молний.
Существует три основных фактора воздействия молнии:
При ударе в коммуникационные объекты или в линии электропередач создается ток грозового импульса, который попадает в жилье по электрическим проводам и трубам. Это может привести к поражению человека электрическим током, повреждению оболочек и жил кабелей, поломке оборудования и сбою в работе внутренних систем.
В третьем варианте разряд попадает в землю. При большом сопротивлении земли либо из-за других факторов напряжение может пойти через заземлитель в нулевой провод обратно в дом. В частных домах ноль заземляется в поселковых трансформаторных подстанциях. Может возникнуть случай, когда напряжение будет и на фазе, и на ноле, что также приведет к поломке приборов и техники. Но это редкий случай: как правило, ток, попадая в землю, равномерно растекается.
Важно! Самые страшные последствия — разрушение или возгорание кровли в результате прямых ударов молнии.
Виды молниезащиты
По исполнению системы защиты бывают:
У каждой системы свое предназначение, и применять их нужно в комплексе, чтобы исключить все три фактора поражения молнией.
Внешнее устройство молниезащиты зданий и сооружений монтируется на крышах, близлежащих пристройках, сооружениях и состоит из молниеприемника, токоотвода и заземлителя. Основная их функция — отвести разряд тока в землю, не дав ему попасть на поверхность крыши. Разряд через токоотвод попадает в заземлитель и дальше растекается в земле.
Внутренний тип системы защиты от молний заключается в установке устройства внутри здания и служит для защиты от импульсных перенапряжений.
Бывают следующие виды внутренних устройств:
Виды молниеприемников
Молниеприемники по конструкции и материалу бывают:
Наиболее распространенные и часто встречаемые — стержневые и тросовые, которые применяются на простых и сложных двускатных крышах. Если строение крыши многоуровневое, рекомендуется использовать комбинированную систему с использованием двух разных видов приемников.
Стержневые молниеприемники
В зависимости от площади крыши можно устанавливать несколько таких мачт. Такие конструкции нужно устанавливать на самую высокую точку крыши или стену. Необходимо, чтобы штырь возвышался не менее чем на 1,5 м.
Можно устанавливать такую систему и отдельно от жилья. Во втором случае мачта может достигать нескольких десятков метров. Стержневая конструкция образует вокруг жилья воображаемый конус — зону защищенного пространства. Размер мачты можно определить из диаметра конуса и его высоты.
Тросовые молниеприемники
В системе есть особые требования к прочности натяжного элемента, что связано с ветровыми нагрузками и обледенением. Чтобы избежать повреждений системы, рекомендуется по всей длине крыши установить натяжение нескольких промежуточных креплений.
Экономичный и простой вариант получается с использованием вместо троса стальной катанки, которая легка в монтаже (можно приваривать к конструкциям и между собой) и достаточно прочна. Для крепления проволоки можно применять специальные болтовые зажимы — клеммы.
Сетчатые молниеприемники
Система горизонтальная, монтируется на плоских крышах. Сетка изготавливается из проволоки-катанки диаметром 10 мм или стальной полосы любого диаметра. Такие приемники монтируются с помощью сварки и требуют большого расхода материала, поэтому система считается очень трудоемкой в монтаже.
Ее можно устанавливать и на скатных крышах. В таком случае сетку монтируют по периметру плоскости. Это основная причина, по которой на скатных крышах устанавливают более дешевые, простые и безопасные при выполнении работ системы. Такой тип защиты подходит для монтажа на крышах школ и детских садов, институтов и государственных учреждений. Считается самым надежным.
Токоотводы
Этот элемент соединяет молниеприемник с заземлителем. Для изготовления применяют стальную проволоку диаметром 6 – 10 мм, подойдут и стальная полоса или полудюймовая водопроводная труба.
Очень важно сделать крепкое и надежное соединение между токоотводами и молниеприемниками с заземлителями. Самым крепким считается сварное или болтовое соединение. Чтобы токоотвод был незаметен на фасаде, его можно покрасить в цвет обшивки или отделки дома. По всей длине спуска необходимо на расстоянии 1,5 – 2 метра сделать промежуточные крепления.
Заземление
Устройство — металлическая конструкция, закопанная или забитая в землю и обеспечивающая хороший контакт системы с землей. При влажных почвах нет смысла оборудовать заземлитель глубже 80 см. Как правило, используют стальной пруток 18 – 20 мм либо уголок 40 – 50 мм, стальную полосу шириной 40 мм. Длина заземлителя должна быть не менее 3 метров.
Конструкция может иметь форму треугольника либо напоминать перевернутую букву «Ш». Соединение элементов заземлителя проводится с помощью сварки либо болтовым скручиванием. Конструкция должна быть надежна на протяжении многих лет, не ослабевать и не иметь люфтов.
Важно! Если возле дома есть готовый контур заземления, грозозащита зданий может быть подключена к нему.
Монтаж молниезащиты
Монтаж стоит начать с обустройства молниеприемников. При выполнении работы на высоте соблюдайте правила безопасности. Если установку планируется выполнять самостоятельно, начните с примитивного проекта. Когда собираетесь подключаться к готовому контуру заземления, планируйте монтаж с учетом данного места подключения.
Всегда соблюдайте правило: токоотводы должны быть максимально короткими и прямыми. Выбираться самое кратчайшее расстояние от молниеприемника до заземлителя.
Обратите внимание! Если не уверены в своих силах, доверьте выполнение работ по монтажу молниезащиты объектов профессионалам. Специалисты выполнят проект и проведут предэксплуатационные испытания.
Испытание и проверка
Перед использованием молниезащиты необходимо проверить следующие элементы системы:
Рекомендуется перед весенне-летним периодом ежегодно проводить визуальную проверку системы на наличие повреждений и обрывов после зимних обледенений и ветров.
На защите от поражения электрическим током человека и безопасности жилья и электроприборов не стоит экономить средства. Лучший вариант — комплекс мер по предотвращению последствий и разрушений от попадания молний.