tiff или jpeg что лучше
Математическое отступление
Но как только от «математических» чисел мы переходим к «компьютерным»(или «цифровым»), т.е. к ячейкам памяти, появляются два фундаментальных ограничения:
И, наконец, последнее. Выше я показал, что последовательное применение двух преобразований (прямого и обратного) не совпадает в «цифровом» случае с исходным результатом, т.е. с тождественным преобразованием, которому в математике равно последовательное применение прямой и обратной функции. Но если это справедливо даже для тождественного преобразования(частный случай), то совершенно очевиден и более общий случай ЛЮБОГО преобразования, являющегося математической комбинацией двух других: если «в математике» А(В(. ))=С(. ), то в общем случае «в цифре» A(B(. )) НЕ РАВНО С(. ). Иными словами, если к одной и той же цели «математически» можно придти разными путями, то эти же пути «в цифре» дадут строго говоря РАЗНЫЙ результат.
RAW, JPEG, TIFF и потеря данных. Мифы и реальность
А на самом деле единственным форматом без потери данных является RAW. Степень потери данных при сохранении в TIFF и JPEG (максимального качества) примерно одинакова на 99% любительских сюжетов. А поскольку время сохранения файла TIFF в камере на порядок больше, чем JPEG, применение формата TIFF в цифровых камерах вообще нецелесообразно.
И лишь затем результат записывается в TIFF (или JPEG) формате на носитель.
Насколько существенны те «ужасы потерь данных», описанные выше? Почему владельцы многочисленных цифромыльниц без RAW не стонут от несправедливости? Может всё это вообще на глаз не видно? Для тех, кто внимательно читал «математическое отступление», ответ уже должен быть очевиден: чем цветастее и контрастнее снимаемый сюжет, чем выше диапазон его яркостей, тем меньшие ошибки он простит. Кроме самого сюжета, сдвигают значения к границам и ошибки экспозиции (недодержка, передержка). Если автомат поставил «среднюю» экспозицию, то сюжетно важный объект может оказаться недо/пере-свеченным, т.е. наиболее чувствительным к дальнейшим ошибкам обработки (близок к границам). Или, резюмируя: разница между технологиями «JPEG-Фотошоп» и «RAW-конвертер-Фотошоп» малозаметна на правильноэкспонированных низкоконтрастных сюжетах, но начинает становиться тем заметнее, чем:
Казалось бы, если не ошибаться с балансом белого и экспозицией (как намеренно сделано в приведённом примере чтобы различия были видны НАГЛЯДНО), всё это не нужно. Но,
Не удержусь и приведу ещё одну, возможно, даже более наглядную, иллюстрацию различий RAW/TIFF/JPG форматов для съёмки (по совету читателей).
Ручной баланс белого «задним числом»
Единственным недостатком указанного способа является лишний расход места на флеш-карте на «служебные» кадры с бумагой, но при нынешних ценах на память и их тенденциях это не слишком обременительно. Зато «неизменно превосходный результат»!
Практические выводы
JPEG, TIFF и RAW: в чем разница?
Стандартом де-факто для записи статичных изображений в цифровых фотокамерах стал формат JPEG. Однако во многих аппаратах предусмотрена возможность сохранения снимков в форматах RAW и TIFF. Давайте разберемся, можно ли получить какие-либо преимущества при использовании этих форматов.
режде всего откажемся от распространенных у начинающих пользователей цифровых фотокамер стереотипов (вроде «TIFF это хорошо, а JPEG плохо», «между RAW и TIFF нет принципиальных различий» и т.п.) и начнем изучение данного вопроса с рассмотрения процессов, происходящих внутри цифровой камеры во время съемки и записи изображения. При этом не будем углубляться в технические тонкости процессов, происходящих внутри цифровых камер (тем более что у аппаратов разных производителей они могут в значительной степени различаться), а ограничимся лишь блок-схемой технологической цепочки, на входе которой имеется изображение, проецируемое объективом камеры, а на выходе готовый файл.
Как «видит» камера
Рис. 1. Наиболее распространенная схема расположения светофильтров в светочувствительных сенсорах современных цифровых фотокамер
Основные стадии преобразования изображения на пути от объектива камеры до светочувствительного сенсора показаны на рис. 2. Как можно видеть, светочувствительный сенсор камеры фиксирует монохромное изображение: каждый его пиксел имеет лишь одну координату (яркости). Запечатленный сенсором камеры образ кадра (на рис. 2 справа) является неким полуфабрикатом, на основе которого формируется полноцветное изображение. Подобное преобразование (demosaic) представляет собой довольно сложную процедуру: используя замысловатые алгоритмы интерполяции величин яркости большого количества соседних пикселов, процессор камеры рассчитывает значения координат недостающих цветовых каналов для каждого пиксела изображения.
Рис. 2. Проецируемое объективом цифровой камеры исходное изображение (слева) проходит через мозаичную систему светофильтров (результат в центре) и в виде монохромного образа (справа) фиксируется светочувствительным сенсором
1 Существуют и трехслойные сенсоры (их разрабатывает и производит компания Foveon), каждый пиксел которых считывает яркостный сигнал одновременно по трем каналам (RGB). Однако подобные сенсоры еще не получили широкого распространения.
Что происходит внутри камеры
еперь рассмотрим основные операции, которые выполняет цифровая фотокамера в процессе съемки. Для наглядности эта цепочка изображена на рис. 3 в виде блок-схемы.
Сначала электрический сигнал с элементов светочувствительного сенсора поступает в АЦП именно здесь аналоговые значения яркости преобразуются в цифровой вид. Полученный массив цифровых данных корректируется в соответствии с калибровочной таблицей (которая уникальна для каждой камеры), в результате чего получается «цифровой негатив» иначе говоря, образ снимка в том виде, в каком его зафиксировал светочувствительный сенсор. Дополнив этот массив данных необходимой служебной информацией (данными о настройках камеры, режиме съемки и т.п.), мы получим RAW-файл.
Здесь необходимо отметить важный момент: получение RAW это не какая-то специфическая процедура, а промежуточный этап обработки изображения, который выполняет любая цифровая фотокамера. Другое дело, что далеко не все модели камер позволяют сохранить образ кадра на сменном носителе в виде RAW-файла.
Следующий шаг преобразование полученного образа в полноцветное изображение (demosaic). После этого изображение обрабатывается шумоподавителем и подвергается цветовой коррекции в соответствии с настройкой баланса белого, установленной в момент съемки. В зависимости от использованного режима сюжетной съемки, пользовательских установок и заводских предустановок камеры может выполняться и дополнительная обработка, например фильтрами повышения резкости (либо размытия), а также путем коррекции яркости, контраста и цветовой насыщенности.
После всех этих процедур изображение конвертируется в стандартный 8-битный формат 2 и (в том случае, если в настройках был выбран размер кадра, отличающийся от физического разрешения аппарата) выполняется ресэмплинг. Полученное изображение дополняется заголовком (в формате Exif или P.I.M.), содержащим информацию о камере, ее настройках в момент съемки, дате и времени съемки и т.п. Если сохранить снимок в таком виде, то мы получим на выходе файл формата TIFF. В том случае, когда камера сохраняет снимки в формате JPEG, изображение перед записью подвергается сжатию, степень которого зависит от установленного в настройках уровня качества: чем выше качество, тем меньше сжатие.
2 8 бит на цветовой канал, или 24 бита RGB.
JPEG, TIFF и RAW: объективный взгляд
а рис. 3 показано, что записываемые камерой файлы форматов JPEG и TIFF различаются только тем, что первый является сжатым, а второй нет. Такие аспекты, как влияние JPEG-сжатия на качество изображения (а заодно и на объем получаемых файлов), мы обязательно рассмотрим ниже, однако сейчас важно другое: и в JPEG, и в TIFF полученные снимки записываются камерой уже после того, как изображение было подвергнуто цветовой коррекции и воздействию прочих средств обработки в строгом соответствии с настройками камеры, установленными в момент съемки.
Рис. 3. Схема операций, выполняемых цифровой камерой при съемке изображения
В чем же заключается качественное отличие формата RAW от JPEG и TIFF? Пожалуй, самое важное это возможность вмешаться в работу RAW-конвертора (то есть, образно говоря, «проявочного» процессора) и изменить те или иные настройки по собственному усмотрению уже после съемки (рис. 4 и 5). И сделать это можно в спокойной обстановке, при необходимости испробовав множество вариантов, сравнив полученные результаты и выбрав из них наилучший.
Рис. 4. Схема выполнения операций по обработке изображения в случае записи полученных кадров в файл формата RAW
Рис. 5. В Photoshop CS имеется штатный модуль (plug-in) универсального RAW-конвертора, позволяющий работать с RAW-файлами различных цифровых фотокамер (на данный момент поддерживается более 80 моделей фотоаппаратов ведущих производителей). В диалоговом окне этого модуля предусмотрена возможность управления огромным количеством настроек, а также предварительного просмотра изображения в произвольном масштабе
Если проводить аналогию с традиционной аналоговой фотографией, то JPEG и TIFF можно сопоставить с готовыми фотокарточками из мини-лаба, а RAW с исходными негативами. Хотя такое сравнение весьма приблизительно, оно позволяет понять принципиальное различие между рассматриваемыми форматами файлов.
Кроме того, запись в RAW позволяет фотографу не думать о многочисленных настройках меню камеры в процессе съемки (а при фотографировании движущихся объектов или быстром изменении условий освещенности манипулировать настройками бывает просто некогда) и целиком сконцентрироваться на творческих задачах. По большому счету при съемке в RAW не важно, какие значения баланса белого, чувствительности, яркости, контраста, четкости и пр. установлены в меню фотоаппарата любой из этих параметров можно будет легко изменить уже после съемки. Пожалуй, единственное, что остается целиком на совести фотографа (или автоматики камеры), это правильный выбор выдержки, диафрагмы и точки фокусировки.
Вполне вероятно, что многие читатели возразят: ведь JPEG и TIFF тоже можно обработать в любом графическом редакторе, скорректировав нежелательные последствия ошибочно установленных настроек. Конечно, это так, но необходимо учитывать, что любое воздействие на изображение, записанное с разрядностью 8 бит на цветовой канал в JPEG или в TIFF, регулировка уровней, тональных кривых, яркости, контраста, насыщенности и пр. неизбежно приводит к уменьшению количества полутонов, то есть к безвозвратной потере части полезной информации. Как следствие, появляется ступенчатость на плавных тональных переходах (более или менее явная в зависимости от степени воздействия) и, что еще хуже, возникают цветовые искажения, наиболее заметные в области нейтрально-серых и телесных оттенков.
В RAW-файл образ кадра записывается с той разрядностью, с которой он был оцифрован АЦП камеры. Во многих современных моделях цифровых фотокамер используются 10- и 12-битные АЦП, и соответственно образ кадра в RAW записывается с более высокой разрядностью, нежели стандартный JPEG или TIFF. Именно поэтому даже в результате серьезных манипуляций над RAW-файлом можно получить на выходе 8-битный JPEG или TIFF без потери полутонов. Например, величину экспозиции снимка, записанного в виде 12-битного RAW-файла, можно задним числом скорректировать в пределах ±2 EV без потери деталей в плавных тональных переходах! Согласитесь, впечатляющая возможность.
Для подтверждения вышесказанного можно привести конкретный пример. Снимок на рис. 6 был сделан при свете лампы накаливания, но по ошибке в настройках камеры была выбрана неверная установка баланса белого (соответствующая дневному свету). При съемке в JPEG получился результат, показанный слева: как и следовало ожидать, на нем наблюдается явный избыток красного и оранжевого. Обработав исходный JPEG в Photoshop (была задействована функция Match Color, а также выполнена ручная регулировка цветового баланса и тональных кривых), удалось достичь некоторых улучшений (результат в центре). Однако из-за потери полезной информации в процессе этих преобразований появились заметная ступенчатость и синеватый ореол на границах теней.
Рис. 6. Снимок, сделанный с неправильной установкой баланса белого. Слева JPEG, записанный камерой; в центре этот же JPEG, обработанный в Photoshop. При съемке в RAW досадную ошибку можно исправить двумя щелчками мыши (выбрав правильную настройку в RAW-конверторе) и без ущерба для качества (результат справа)
Тот же кадр с точно такими же настройками был сделан в RAW. Для исправления допущенной фотографом ошибки в настройках RAW-конвертора было установлено корректное значение баланса белого (в данном случае соответствующее лампе накаливания), и снимок после конвертации в JPEG стал именно таким, каким и должен был быть (изображение справа). Обратите внимание на то, что в этом случае удалось откорректировать изображение буквально «в одно касание» и без малейшего ущерба для его технического качества.
Среди пользователей цифровых камер широко распространено мнение, что работа с RAW-файлами трудоемка и требует значительных затрат времени. Однако это не более чем заблуждение. Вручную контролировать процесс конвертации каждого RAW-файла вовсе не обязательно: большинство современных RAW-конверторов позволяют обрабатывать снимки в пакетном режиме в соответствии с настройками камеры, установленными на момент съемки. Подобным образом можно получить точно такие же файлы (JPEG или TIFF), которые сохранила бы ваша камера в обычном режиме. Времени на это потребуется совсем немного: например, конвертация сотни 4-мегапиксельных RAW в файлы формата TIFF даже на относительно слабом ПК занимает порядка 10 минут.
При правильной установке экспозиции, баланса белого и прочих параметров разница между кадрами, сохраненными непосредственно в JPEG (или в TIFF) и преобразованными в соответствующие форматы из RAW-файлов при помощи программных средств, может быть и вовсе не заметна. Однако при съемке контрастных сцен и окрашенных в яркие цвета объектов допуски к точности подбора параметров съемки становятся значительно более жесткими, и в подобных случаях можно легко ошибиться с выбором правильной экспозиции вот тогда-то возможность записи в RAW окажется как нельзя кстати.
Просмотрев результаты, полученные после пакетной конвертации, можно отобрать те кадры, которые представляют определенную ценность, но в силу тех или иных обстоятельств были сняты с техническим браком. Разумеется, над подбором оптимальных настроек для этих кадров придется поработать вручную, однако и конечный результат в этом случае будет выгодно отличаться от полученного после обработки этих же снимков, записанных камерой в JPEG или в TIFF.
RAW всемогущий?
У многих читателей может сложиться представление о формате RAW как о некоем чудодейственном средстве, позволяющем возвращать к жизни любые загубленные снимки, но это не совсем так. Возможности по обработке RAW-образов тоже ограниченны и зависят от технических характеристик сенсора и АЦП камеры.
Например, при съемке высококонтрастных сюжетов или при ошибочном выборе экспозиции может возникнуть так называемый эффект ограничения (clipping) иначе говоря, некоторые области изображения окажутся слишком темными или чересчур яркими для элементов светочувствительного сенсора. В результате данные области будут восприняты сенсором как однородные черные или белые пятна, лишенные каких-либо деталей. Вполне понятно, что никакие программные средства не помогут проявить те детали, которые были безвозвратно потеряны сенсором камеры (а следовательно, отсутствуют в исходном цифровом образе кадра).
Следует быть готовым и к тому, что недоэкспонированные кадры, «вытянутые» установкой положительной эскпокоррекции в RAW, после обработки станут более шумными (особенно в темных областях). Степень подобных ухудшений напрямую зависит от характеристик светочувствительного сенсора камеры: чем больше разрешение и чем меньше физический размер сенсора, тем более заметными будут шумы при одинаковых величинах коррекции. При этом, конечно, нельзя не отметить, что при аналогичных манипуляциях над кадрами, сохраненными в JPEG или в TIFF, конечный результат будет еще хуже.
Размер имеет значение
Теперь рассмотрим такой фактор, как объем получаемых файлов. Наиболее экономичным из рассматриваемых форматов является JPEG. Типичный размер 4-мегапиксельного JPEG, сохраненного с максимальным качеством, колеблется в пределах 1,8-2,5 Мбайт (конечно, в зависимости от конкретного сюжета разброс может быть гораздо больше рис. 7). Объем изображений, сохраненных в формате TIFF, ужасающе огромен: например, 4-мегапиксельный снимок занимает почти 12 Мбайт, а 8-мегапиксельный целых 24. Даже при установке минимальной степени компрессии (то есть максимального качества) объем файла формата JPEG получается в 5-6 раз меньше аналогичного по разрешению TIFF.
Рис. 7. Объем файла формата JPEG может варьироваться в широких пределах в зависимости
от запечатленного на снимке сюжета. Оба представленных кадра были сделаны на одной камере
с одинаковыми настройками (разрешение 2272Ѕ1704 пиксела, наилучшее качество). При этом файл с одним изображением (слева) занимает всего 1070 Кбайт, а с другим уже 3523 Кбайт (почти столько же, сколько и сохраняемый данной камерой RAW)
Хотя по сравнению с TIFF файлы формата RAW содержат больше полезной информации, их объем значительно меньше. На самом деле данный «парадокс» объясняется довольно просто: как уже было упомянуто в начале статьи, сенсор камеры воспринимает образ кадра в виде монохромного изображения. Поэтому, например, 4-мегапиксельный RAW, записанный с разрядностью 12 бит, занимает примерно 6 Мбайт (против 12-мегабайтного TIFF с разрядностью 8 бит на канал). Стоит отметить, что в ряде камер (в частности, в моделях Canon) при записи RAW-файлов применяется сжатие без потери данных (наподобие zip). Соответственно в этом случае реальный размер RAW-файлов оказывается еще меньше, и в среднем они занимают всего лишь в 1,5 раза больший объем по сравнению с аналогичными снимками, записанными камерой в JPEG с максимальным качеством. Согласитесь, что при нынешнем уровне цен на модули флэш-памяти и описанными выше преимуществами RAW разница уже не принципиальна.
TIFF против JPEG: сжимать или не сжимать?
Несколько слов о различии качества изображений, сохраненных в TIFF и в JPEG. Широко распространено убеждение, что TIFF однозначно лучше JPEG, и что если есть возможность сохранять в TIFF, то лучше ею воспользоваться ради сохранения качества изображения. Однако, как показывает практика, при сохранении снимков в JPEG с минимальной степенью сжатия качество изображения столь незначительно отличается от несжатого снимка, что целесообразность принесения огромных объемов памяти в жертву малому приросту качества становится весьма сомнительной. Конечно, есть отдельные сюжеты, на которых разница между TIFF и JPEG (даже с минимальным сжатием) будет критичной. Однако в практике фотолюбителя такие снимки составляют единицы (если не десятые доли) процента от общего количества отснятых кадров.
Кроме того, нельзя не учитывать и тот факт, что именно JPEG стал в настоящее время фактическим стандартом хранения статичных изображений в электронном виде. Работу с файлами формата JPEG поддерживают многие бытовые и компьютерные устройства DVD-проигрыватели, фотопринтеры, КПК, медиаплееры и пр. Например, распечатать файл формата JPEG непосредственно с флэш-карты можно на любом современном фотопринтере с функцией автономной печати, а для того, чтобы вывести изображение из TIFF, потребуется задействовать компьютер.
Выводы
одводя итог обсуждению данной темы, можно сделать несколько важных выводов:
Творческая лаборатория «СРЕДА»
официальный блог компании
TIFF или JPEG?
Сегодня мы попробуем ответить на казалось бы простейший вопрос — какой формат выбрать для сканирования: TIFF или JPEG? На эту тему написано множество статей, но даже весьма опытные фотографы не сразу приходят к оптимальному решению. В чем же подвох? Почему напрашивающийся ответ «конечно, TIFF» на самом деле не столь однозначен, как это кажется на первый взгляд? Все просто — любые теоретические соображения необходимо проверять практикой. И вот что мы увидим, если сделаем это.
Для примера возьмем кадр со среднеформатной камеры Hasselblad 503cw, сделанный на пленку Kodak Portra 400. Отсканируем его на Nikon Coolscan 9000 с максимальным разрешением 4000 dpi (
8800 x 8800 px) и сохраним в двух форматах — TIFF и JPEG с качеством 100%. Прежде всего сравним размеры этих файлов:
TIFF — 465 Mb
JPEG — 90 Mb
Разница, согласитель, приличная, в 5 раз. Для одной 12-кадровой пленки разница в требуемом объеме дискового пространства составит [(12 х 0,465) = 5,58 Gb] — [(12 х 0,09) = 1,08 Gb] = 4,5 Gb. То есть в одном случае сканы пленки займут 5,58 Gb, а в другом 1,08 Gb. Что мы получаем за эту разницу?
Прежде, чем ответить на этот вопрос, обратим внимание на то, что кроме большого объема файлов, формат TIFF намного дольше переписывается по локальной сети и открывается в Фотошопе. То есть если, например, вы храните файлы в домашнем сетевом хранилище (крайне распространённая схема в наше время), то просто так «налету» обратиться к архиву вы уже не сможете — прежде чем его посмотреть, файлы нужно будет перекачать на локальный компьютер. Давайте посмотрим, получаем ли что-то взамен этого неудобства.
Итак, в одном углу ринга TIFF весом 465 Mb, в другом JPEG 90 Мб. Кто победит? Что дает нам 5-кратный прирост веса с точки зрения качества картинки? Проведем наглядный эксперимент. Возьмем изначально сканированный TIFF, сохраним его JPEG-версию с качеством 100% (именно так делает софт всех сканеров) и сравним. Важно — при сравнении вся работа ведется в 16-битном растровом файле TIFF, нижеприведенные скриншоты сделаны соответствующим образом. То есть сравнение абсолютно корректно, т.к. ни в коей мере не является сравнением двух jpeg’ов.
Итак, посмотрите на заглавную картинку в этой статье. Слева TIFF, справа JPEG. Видите разницу? Вряд ли, потому что оба файла при публикации в интернете — уже джипеги, к тому же маленького размера. Поэтому теперь посмотрим на сильно увеличенный (до 500%) фрагмент кадра:
Видите ли вы разницу теперь? Очень сомнительно, хотя, конечно, не исключено. И ведь это при 500%-ом увеличении! При таком, при котором никто никогда, включая вас самих, эти файлы смотреть не будет.
И всё же — попробуем найти разницу, пусть глазами ее и не видно. Для этого наложим JPEG на TIFF в Adobe Photoshop двумя слоями в режиме Difference:
Там, где разницы нет, цвет будет черным. Там, где она есть, каким-то, отличным от черного.
Под каким бы углом вы не пытались смотреть на этот «квадрат Малевича», вряд ли вы увидите здесь какие-либо другие цвета, кроме черного. Это означает, что даже на техническом уровне наблюдаемой разницы между форматами TIFF и JPEG не существует.
Но все-таки. Должна же быть хоть какая-то визуальная разница между TIFF и JPEG, спросите вы? Иначе какой вообще смысл в формате TIFF? Да, разница действительно есть. Но она сугубо техническая, настолько несущественная, что в реальных условиях вы с ней никогда не столкнетесь. Чтобы ее увидеть, нужно очень сильно повысить контраст у нашей разницы Difference. Очень сильно — это значит настолько сильно, насколько в реальной практике мы никогда задирать не будем. Но даже при таком невероятно мощном контрасте цвет разницы будет оставаться черным. То есть разница снова не наблюдается:
И только если задрать контраст до такого предела, когда белая и черная точки на инструменте Levels схлопнутся в одну (что абсолютно никогда невозможно в реальной обработке фотографий), только тогда можно увидеть некоторую несущественную разницу, проявляющуюся на уровне естественного шума самого цифрового формата и матрицы сканера.
Ключевой аргумент приверженцев формата TIFF — это мифическая постеризация (эффект «небо ступеньками»), которая якобы может вылезти при обработке 8-битного JPEG файла. В теории это действительно так. Но в реальной практике при грамотном сканировании и сохранении файлов это не подтверждается.
Продемонстрируем гротескный (то есть нарочито усиленный) пример — возьмем два наших файла и применим к ним очень сильную контрастную кривую. Настолько сильную, какую в реальной жизни применять мы вряд ли будем.
Именно после значительного повышения контраста на плавных градиентах (обычно в небе) чаще всего проявляется постеризация, однако в нашем случае этого не произошло. Для уверенности сохраним результат сравнения в виде PNG файла, чтобы исключить вмешательство JPEG при просмотре.
На всякий случай посмотрим на фрагмент скана при 100% увеличении, и снова никакой постеризации.
При работе с цифровыми файлами появление постеризации более вероятно, однако в случае пленки 8-битность сканов (именно сканов) не является проблемой, в частности и потому, что пленочное зерно работает как естественный дитеринг, т.е. сглаживает градации и не дает появиться постеризации. Для цифровых файлов разница между 8 и 16 битами более существенна.
Получается, что формат TIFF довольно бессмысленен для сканирования и хранения сканов. Намного разумнее делать это в JPEG — работать с такими файлами намного быстрее, занимают они на порядок меньше места, а визуальное качество картинки в них не отличается. Однако, тут есть несколько важных нюансов:
1) Качество сохранения такого JPEG файла должно быть 100%. Если же, например, вы сохраните JPEG c качеством даже 95%, то наблюдаемая разница в приведенном примере начнет наблюдаться гораздо быстрее, и такой файл уже будет действительно проигрывать формату TIFF. Поэтому обязательно проверьте в настройках вашей программы сканирования качество JPEG файла. Если же вы сканируете в фотолаборатории, выясните, какое качество JPEG файла они используют. Например, в лаборатории SREDA Film Lab всегда используется только 100% качество JPEG-файлов, на всех сканерах.
2) Файл JPEG подходит только для хранения исходной информации, так называемого «сырого скана». Если вы в дальнейшем планируете обрабатывать снимок, рекомендуется перевести файл в формат TIFF (или PSD) 16 bit и далее работать с ним. Каждое повторное сохранение JPEG файла неизбежно приводит к его деградации и рано или поздно разница становится визуально заметной. Поэтому любое повторное сохранение лучше делать уже в формат TIFF, а вот готовый результат можно снова сохранить в JPEG (и отправить на печать или опубликовать в интернете) — это будет первое пересохранение JPEG’а, деградацию которого глазом увидеть практически невозможно. В принципе разницу вы вряд ли увидите даже при 5-7 кратном пересохранении JPEG’а, но этого, конечно, лучше не делать.
Поделиться ссылкой:
Понравилось это:
TIFF или JPEG? : 20 комментариев
Для чистоты эксперимента файл разницы нужно сохранять в PNG. 🙂
Пробовали — тоже самое, но размер файла для статьи сильно увеличивается.
Тут опечатка — (12 х 0,9) = 1,08 Gb — должно быть 0,09
Из предложенных вариантов однозначно только TIFF, и только в 16 бит/канал. Поскольку получая отсканированнные изображения в JPEG, Вы получаете их с глубиной цвета 8 бит/канал. А это серьезно снижает запас информации на обработку и стадиально увеличивает шансы получения постеризации.
Чтобы было понятнее, представьте себе, пришли Вы в ресторан, а официант Вам говорит: «Какое пиво выбрать, стояло или свежее? Ведь напрашивается ответ, что свежее, но в чем же подвох? Посмотрите, этот бокал налили только что, а этот был налит вчера. И второй стоит в пять раз меньше. И даже если мы поставим их рядом, мы не увидим разницы!»
И это действительно будет так, разницу не заметите. Ровно до того момента, пока Вы не попробуете пиво на вкус. Так и картинкой: все одинаково, пока не начал обрабатывать.
Паша, ну ты же ходил на мои занятия. От кого, а от тебя такой глупости не ожидал.
Андрей, я всю теорию знаю великолепно, поверь. Только вот реальная практика этого не подтверждает. Я добавил в статью наглядную демонстрацию. Важные моменты — речь идет о сканах (не о цифровой фотографии), где есть естественный диттеринг, и речь идет о 100% джипеге (даже при 95% результаты будут другие). Если не веришь, приведи реальный пример с постеризацией, после этого приноси этот негатив, мы его отсканируем и я продемонстрирую, что никакой постеризации при грамотном сканирровании и сохранении файлов не будет и в 8-битном файле.
Верю, Паша, что знаешь великолепно.
И вижу, что опять путаешь теплое с кислым.
Когда человек получает исходник, а отсканированное изображение — это по определению исходник, его интересует не столько, как картинка выглядит сейчас, сколько, что с ней можно будет сделать в процессе обработки.
И вот тут все история про «диттеринг», разницу шумов, отличия 100% от 95% (кстати, а если вы сразу отсканируете с размером 95% от исходного результаты тоже будут другие?) — это разговор в пользу бедных.
Ох, извини, перечитал еще раз. Речь шла не о масштабировании до 95%, а об уменьшении фактора качества при сохранении. Так это вообще уже не про холодное/теплое, или сладкое/кислое, а про свежее/тухлое. Право слово, не стоили еще и алгоритмы jpg-сжатия в этот разговор приплетать.
После сканирования мы имеем оцифрованное изображение, с заданными техническими параметрами. История его создания не важна. И если повышать контраст этого изображения, то в 8-битном режиме полезет пастеризация. Более ядреные пленочные шумы до какого-то момента будут ее маскировать, но всему есть предел. И в некоторый момент она вылезет.
А кстати, хороший вопрос: если ты так уверен, что 8 бит хватит, зачем вообще предлагать пользователю переходить на этапе обработки в 16? Ведь у него, о ужас, все файлы увеличатся в ДВА РАЗА! А ведь именно размер файлы был основным доводом к написанию этой статьи.
Искусственный перевод в 16-битный режим может защитить только от набегающей погрешности округления, то есть, от понижения контраста, но никак не от его повышения.
Тезис «а зачем повышать контраст?» — это опять разговор в пользу бедных. Как и пример с конкретным небом на демонские-картинке. Даже если автор не захочет сделать этого на всем кадре, всегда остаются локальные коррекции. На фотографиях с небом авторы очень часто хотят сделать его более контрастным, насыщенным и красивым. И небо у него будет свое, не такое, как не демке. Привет. сам знаешь от кого.
Завершая тему. Ты в точности повторил холивар десятилетней давности (а может и больше, время летит так быстро). Когда Маргулис доказывал всем, что 8-битное представление не имеет никаких минусов, а многие специалисты ему здраво возражали. При этом Ден использовал точно такое же передергивание: давайте все переведем все сначала в 8 бит, а затем желающие переведут это обратно в 16 и мы будем сравнивать. К большому сожалению Брюс Линдблюм ликвидировал свой сайт. У него была самая толковая и развернутая статья на эту тему. Желающие найдут ее в интернете самостоятельно (на английском языке).
Все сказанное мной выше отнюдь не означает, что сканировать в 8 бит/канал нельзя. Во многих случаях можно пойти на уменьшение глубины цвета, и, как следствие, позволить себе получить исходники в jpg. Когда-то мы работали только в таком представлении, и делали очень даже неплохие вещи. Но пользователь должен понимать, когда ЕМУ нужно 16-битное представление, а когда ОН может позволить СЕБЕ обойтись 8-битным.
Людей нужно образовывать, а не оболванивать. Желание отдавать файлы на носителях меньшего размера не должно преобладать над здравым смыслом.
Не удаляйте, пожалуйста, эту заметку. Я обязательно напишу подробную статью у себя в ЖЖ с разбором этой темы. Очень хотелось бы иметь хорошую ссылку для разбора заблуждений.
Андрей, все это я очень хорошо знаю. 10 лет уже нас этими сказками кормят технические специалисты. Есть теория, а есть реальная практика. В очередной раз я вижу много слов и пафоса, но пока всё впустую. Пиши статью, показывай примеры и — обязательно (это принципиально важно) приноси потом нам свой негатив на сканирование.
Также обрати внимание на то, что я допускаю чисто теоретическую постеризацию про очень сильной (конечно же, не имеющей никакого практического смысла) обработке, но считаю, что ради этого чисто теорерического (то есть не встречающегося в реальной практике) исключения бессмысленно приносить такую большую жертву. Если скан нужно обрабатывать до такой степени, что для этого потребуется 16 бит, его место в корзине. Есть большая разница между фотографами, которые могут (и должны) переснять плохую фотографию и цветокорректором, который хочешь не хочешь должен вытянуть что-то из заведомо негодного снимка. Эта статья для фотографов и задачи здесь решаются фотографические.
Насчет размера файла ты передергиваешь. Он увеличивается не в 2 раза. Читай внимательно статью.