vegetable shortening что это
Довольно часто встречается термин шортенинг (shortening) в кулинарном производстве, особенно в приготовлении теста или кондитерских кремов.
Что же такое шортенинг?
Этот продукт мало чем отличается от брусочка сливочного масла, разве что выглядит гораздо светлее, чем масло.
На самом деле — это кондитерский жир, или пищевой жир специального назначения. Он полон растительными рафинированными маслами, в том числе хлопковым, арахисовым, кокосовым или пальмовым маслами, антиокислителями и эмульгаторами. Массовая доля жира в нем составляет 99 %.
При комнатной температуре он не размягчается, как сливочное масло, его структура остается более твердой. В отличие от сливочного масла, шортенинг имеет нейтральный вкус. Это делает его полезным для использования там, где сильные жирные ароматы не желательны.
Характеристики шортенинга:
Пищевая ценность кондитерского жира на 100 грамм продукта:
Где используется шортенинг:
Применяется в промышленном производстве вафельных начинок, печенья, шоколадных изделий, конфет, для хлебобулочных изделий. Также используется при производстве теста, чтобы оно стало рассыпчатым и пышным.
Если часть сливочного масла заменить на кондитерский жир (шортенинг) при изготовлении декоративного крема, то он станет более устойчив к высокой температуре воздуха, гораздо медленнее будет плавиться, что имеет значение при украшении изделий сложными и рельефными фигурами.
Мнения о продукте в обществе:
Кулинары имеют разное мнение об этом продукте, высказываясь как за его использование, так и против, указывая на вредные характеристики. Утверждается, что частое употребление кондитерского жира в еду оказывает отрицательное влияние на сердечно—сосудистую систему человека.
Другие говорят, что обычному потребителю не стоит столь категорично оценивать пользу или вред продукта, потребление которого в малом количестве не является ежедневным. В то же время стоит учитывать универсальность продукта, широкий круг его использования.
Кондитерский жир можно (не всегда) недорого купить в розничных магазинах.
Vegetable shortening что это
— кулинарный жир для выпечки и жарки от Nutiva, который некоторые исключительно предприимчивые девушки, судя по отзывам на айхербе, используют зачем-то в косметических целях.
Не то чтобы я много жарю, а уж выпекаю и того меньше, но когда приходится готовить продукты, нуждающиеся в обжаривании на сковороде, поневоле задумаешься, какой жир лучше использовать. Обычно у меня в ходу оливковое масло, очень люблю топленый бараний жир, пробую готовить и на кокосовом. Из интереса как-то купила Nutiva, Organic Shortening, оригинальная смесь красного пальмового и кокосового масел, 15 унций (425 г), продукт в общем понравился и даже прижился на моей кухне (во всяком случае, лишним не стал), покупаю в последний год на айхербе не однократно, аналогов в наших магазинах не заметила.
Из истории продукта. Классическим примером шортенинга считается кулинарный жир Crisco, который с 1911 года выпускает компания Procter & Gamble на основе гидрогенизированного хлопкового масла. Технология, вообще-то была изначально предложена предпринимателям для производства мыла, но американцы нащупали другую золотую жилу, увидев дешевый промышленный способ получения тугоплавких растительных жиров, не портящихся без холодильника и пригодных в пищу. Так родился шортенинг. Трансжиры в гидрогенизированных маслах в те времена никого не смущали (о них попросту еще не знали). Но за 100 с лишним лет существования технологии мир сильно изменился и сейчас даже пресловутый дедушка Crisco выпускается без трансжиров.
Чем хорош шортенинг Nutiva? В составе Nutiva, Organic Shortening только органическое пальмовое масло, а так же нерафинированные красное пальмовое и кокосовое масла холодного отжима. Продукт не гидрирован и и не содержит трансжиров. Сертифицирован QAI, IMO, B Corporation, гордо носит значок USDA organic, не содержит GMO продуктов.
Надеюсь, мой отзыв был вам полезен. Делая покупки до конца декабря, не забывайте вводить в корзину праздничный код YEAREND10, который подарит вам скидку в размере 10% на все заказы, дороже 40 долларов.
vegetable shortening
1 vegetable shortening
2 vegetable shortening
3 vegetable oil shortening
4 vegetable oil shortening
См. также в других словарях:
vegetable shortening — n. cooking solid fat made from hydrogenated vegetable oils … English contemporary dictionary
Spry Vegetable Shortening — Spry was a brand of vegetable shortening produced by Lever Brothers starting in 1936. It was a competitor for Proctor Gamble s Crisco, and through aggressive marketing through its mascot Aunt Jenny had reached 75 percent of Crisco s market share … Wikipedia
Copha (vegetable shortening) — For other uses, see Copha (disambiguation). Copha, a registered trademark of Peerless, is a form of vegetable fat shortening made from hydrogenated coconut oil. It is 100% fat, at least 98% of which is saturated. It also contains soybean lecithin … Wikipedia
Shortening — is a semisolid fat used in food preparation, especially baked goods, and is so called because it promotes a short or crumbly texture (as in shortbread). The term shortening can be used more broadly to apply to any fat that is used for baking and… … Wikipedia
shortening — n. (esp. AE) vegetable shortening * * * [ ʃɔːtnɪŋ] (esp. AE) vegetable shortening … Combinatory dictionary
shortening — short|en|ing [ ʃɔrtnıŋ ] noun uncount a solid type of fat that is used especially for making PASTRY: vegetable shortening … Usage of the words and phrases in modern English
Vegetable fats and oils — Vegetable oil redirects here. For other uses, see Vegetable oil (disambiguation). Plant oils Olive oil Types Vegetable fats (list) … Wikipedia
shortening — /shawrt ning, shawr tn ing/, n. 1. butter, lard, or other fat, used to make pastry, bread, etc., short. 2. Phonet. the act, process, or an instance of making or becoming short. 3. Ling. a. the act or process of dropping one or more syllables from … Universalium
vegetable — <<11>>vegetable (adj.) c.1400, living and growing as a plant, from O.Fr. vegetable living, fit to live, from M.L. vegetabilis growing, flourishing, from L.L. vegetabilis animating, enlivening, from L. vegetare to enliven, from vegetus vigorous,… … Etymology dictionary
shortening — noun Fat such as butter, lard or hydrogenated vegetable oil used to make shortcrust pastry … Wiktionary
shortening — short|en|ing [ˈʃo:tnıŋ US ˈʃo:rt ] n [U] fat made from vegetable oil that you mix with flour when making ↑pastry … Dictionary of contemporary English
Шортенинг (shortening) — кулинарный жир, который используется для самых различных нужд: от жарки, до добавления в тесто, чтобы добиться его рассыпчатости. Наиболее известной в США маркой такого жира на основе растительного масла является «Crisco», которая выпускается компанией Procter & Gamble с 1911 года.
Состав: растительные масла и жиры (нелауриновые) рафинированные дезодорированные, эмульгаторы, антиокислитель. По желанию заказчика может вырабатываться с бета-каротином и ароматизатором сливочного масла. Жировая фаза – 99,8 % энергетическая ценность – 898 ккал
Пекарский или по- другому кондитерский жир. Шортенинг обычно определяют как пластическую жиро-масляную массу (комбижир) для кулинарии. Его используют для приготовления пищи, выпечки и жарки; различные виды его получаются из говяжьего жира, растительных масел или их смесей. Жиры и масла могут быть частично гидрированными. Для достижения необходимой твердости должно соблюдаться определенное соотношение твердых и жидких глицеридов. Многие шортенинговые продукты обладают специфическими свойствами, делающими их пригодными для особых целей, например жарки или выпечки тортов, печенья или крекеров. В некоторых случаях к ним добавляют разрешенные к применению антиоксиданты с целью замедления процесса прогоркания. Шортенинги получают смешиванием желаемых жиров и масел, дезодорацией смесей с последующим замораживанием и упаковкой.
Шортенинг обычно определяют как пластическую жиро-масляную массу (комбижир) для кулинарии. Его используют для приготовления пищи, выпечки и жарки; различные виды его получаются из говяжьего жира, растительных масел или их смесей.
МАРГАРИН СТОЛОВЫЙ «82%» представляет собой пищевой продукт с вкусо- ароматическими добавками на 82 % состоящий из жиров. Его изготавливают путем смешивания различных жиров и масел, а также ингредиентов, для придания продукту определенных функциональных свойств. Продукт может использоваться в хлебопекарной, кондитерской промышленности для изготовления сахарного, песочного печенья, кексов, сливочного крема, также применяется в сетях общественного питания и в домашней кулинарии.
Маргарины и шортенинги, произведенные на основе пальмового масла, обладают лучшими питательными свойствами и дают лучший результат при использовании в пищевой промышленности и увеличивают сроки хранения готового продукта.
Vegetable Shortening
“Vegetable shortenings and mixed fats” A semisolid fatty product, obtained by blending edible animal fats (edible tallow, lard, and partially hydrogenated fish oil) and vegetable oils and/or partially hydrogenated vegetable oils.
Related terms:
Lipids Basics: Fats and Oils in Foods and Health
Vegetable Shortening
Vegetable shortening was developed in the early 1900s as a more economical and nutritional alternative to animal fat. It also provided a vegetable-based fat that vegetarians and people with religious dietary restrictions could use in cooking and baking.
Vegetable shortening is a semisolid fat that is mostly solid at room temperature. It is named for the “short” or crumbly texture that it produces in cooking and baking applications, particularly in shortbread, piecrusts and puff pastry. Vegetable shortening inhibits the formation of long, tough strands of gluten in dough and contributes a light texture.
Vegetable shortening is typically made from hydrogenated and partially hydrogenated vegetable oils, such as corn, cottonseed or soybean. It has a higher smoke point than butter and margarine, and is 100 percent fat (compared to butter and margarine that contain milk solids). One tablespoon of vegetable shortening has about 113 calories, 13 grams of total fat, 3 grams of saturated fat, and 0 milligrams of cholesterol. Some vegetable shortening contains 2 grams of trans fats.
The fat content of vegetable shortening makes it useful for frying and for recipes that require pure fat. It is more economical than butter or lard; does not require refrigeration (it may last up to one year in an airtight container); and can extend the shelf life of some foods and baked goods.
Some vegetable shortening contains tiny bubbles filled with nitrogen. These bubbles are useful in recipes that require leavening. These vegetable shortenings may also contain emulsifiers that help stabilize the gas-filled bubbles and disperse the fat.
When vegetable shortening is used in cookies instead of butter, the cookies may have a fluffy texture but lack flavor. If half butter and half vegetable shortening are used, both texture and flavor may improve. If butter must be excluded for religious or dietary reasons, butter flavoring or ground nuts could be added to the batter for their rich flavor and for the granular texture of nuts.
Dough Conditioners in Flour Tortilla Processing
Various polymorphic or crystal forms of vegetable shortening developed for breadmaking are being utilized for tortilla production. Most of the hot-press operations utilize plastic shortenings. Fats play a very important role in the way the dough behaves during processing and also in the quality of the end product. Most of the tortilla formulations contain 5–15% shortening. Fat has a large influence on tortilla flavor, dough machinability, and tortilla texture. Machinability is improved as shortening lubricates and reduces dough stickiness. It also helps in maintaining shelf stability by preventing the starch retrogradation that causes staling.
Dough without fat is significantly harder than doughs with either 6 or 14% fat in the formula ( Fig. 8.5 ). Low-fat doughs have more solidlike (tougher, firmer) properties than high-fat doughs, which have more fluidlike properties ( Srinivasan et al 2000 ). Thus, high-fat doughs are easier to process into tortillas. This makes fat a very effective dough conditioner. Increasing the amount of fat also results in increased tortilla diameter ( Figs. 8.6 and 8.7 ) and a corresponding decrease in the moisture content. The taste, mouthfeel, and appearance are also improved with more fat.
A significant improvement in the storage stability of tortillas occurs when more fat is used. The type of fat used also results in differences in the storage stability of tortillas. The rollabity score (measured as rate of loss of flexibility) ( Fig. 8.8 ) relates to the solid-fat index of the specific fat used to make the tortilla. Tortillas with all-purpose shortening lose flexibility faster than those with liquid oil and shortenings with a lower solid-fat index ( Table 8.2 ). Fats that have a lower melting point produce tortillas with longer shelf stability. The type of fat also affects opacity, appearance, aroma, taste, and mouthfeel of the end product.
Fat Type | Temperature | ||||
---|---|---|---|---|---|
10°C (50°F) | 21°C (70°F) | 26.7°C (80°F) | 33.3°C (92°F) | 40°C (104°F) | |
All purpose | 24 | 20 | 19 | 15 | 11 |
Lard | 25 | 19 | 13 | 4.5 | 2.5 |
Pie shortening | 18 | 12 | 12 | 9 | 5 |
Liquid frying oil | 6 | 4 | 3 | 1.5 | 0 |
Salad oil | 0 | 0 | 0 | 0 | 0 |
In reformulating tortillas to obtain 0 g of trans fat in the product, good-quality tortillas were made without the use of hydrogenated-oil shortening by replacing it with various alternative fats ( Bejosano et al 2006 ). Unmodified oils, especially those that are liquid at room temperature produced softer doughs; thus, hot-press conditions were adjusted accordingly by shortening the hot-press time. In addition, more-fluid fats facilitate shorter mixing time. Replacing hydrogenated-oil shortening with a nonhydrogenated type (e.g., interesterified, fractionated, and saturated/unsaturated blends) or regular oils (e.g., palm and soybean) did not result in significant differences in opacity, moisture, pH, and specific volume of tortillas.
Unmodified oils have lower melting points than solid-fat shortenings and tend to produce tortillas with softer texture. The tortilla formulation contained an emulsifier, sodium 2-stearoyl lactylate; thus, tortilla quality was not adversely affected when the hydrogenated-oil shortening was replaced with alternative fats ( Bejosano et al 2006 ). The use of unmodified oils produced tortillas with 0 g of trans fat and also improved tortilla texture and shelf stability. However, during storage, tortillas made with regular soybean oil maintained rollability, extensibility, and flexibility longer than those made with other fats.
Production and Nutraceutical Properties of Breads Fortified with DHA- and Omega-3-Containing Oils
Baking performance
According to the FA composition of all experimental oil sources, the vegetable shortening was partially substituted to yield 32-g slices of bread containing either 25 or 50 mg DHA, 25–50 mg total ω-3 in the case of fish oil, or 120 mg linolenic acid from flax oil. The source of the oil did not significantly affect optimum water absorption but reduced mix time by 10–15% ( Table 29.1 ). A similar performance was observed in commercial breads produced by the sponge dough procedure. The utilization of dough conditioners and improvers such as vital gluten, oxidizing agents, lecithin, and SSL counteracted the deleterious effects of the ω-3-rich oils ( Table 29.2 ).
Sample | Water Absorption (%) | Mixing Time (min:sec) | Proof Height (cm) | Bread Height (cm) | Oven Spring (cm) b | Bread Weight (g) | Bread Volume (cm 3 ) | Apparent Density (g/cm 3 ) | Crumb Texture c |
---|---|---|---|---|---|---|---|---|---|
25 mg DHA | |||||||||
Control | 64 | 3:43 a | 7.625 a | 10.875 a | 3.250 a | 143.2 a,b | 888.3 a | 0.162 c | 5.3 a,b |
Algae oil | 64 | 3:35 a,b | 7.500 a | 10.575 a | 2.975 a | 144.2 a,b | 826.3 b | 0.175 b | 5.0 a–c |
Emulsion-P | 64 | 3:23 b,c | 7.525 a | 10.575 a | 3.050 a | 143.4 a,b | 830.8 a,b | 0.174 b,c | 6.0 a |
Emulsion-L | 64 | 3:28 a–c | 7.700 a | 10.350 a,b | 2.725 a,b | 142.2 b | 828.3 a,b | 0.172 b,c | 5.8 a |
Flax oil | 64 | 3:20 b,c | 7.475 a | 10.325 a,b | 2.850 a,b | 142.5 b | 823.3 b,c | 0.174 b,c | 5.8 a |
Fish oil | 64 | 3:15 c | 7.550 a | 10.300 a,b | 2.750 a,b | 144.1 a,b | 823.8 b,c | 0.175 b,c | 4.3 b,c |
50 mg DHA | |||||||||
Control | 64 | 3:33 a,b | 7.700 a | 10.175 a,b | 2.475 b | 140.5 b–d | 841.3 a | 0.167 a,b | 4.8 b–d |
Algae oil | 64 | 3:23 b,c | 7.625 a,b | 10.475 a,b | 2.850 a,b | 140.4 c, d | 842.5 a | 0.167 a,b | 5.0 a–c |
Emulsion-P | 64 | 3:28 a–c | 7.475 b,c | 10.500 a | 3.025 a,b | 139.8 d | 853.8 a | 0.164 b | 5.8 a,b |
Emulsion-L | 64 | 3:23 b,c | 7.525 a,b | 10.425 a,b | 2.900 a,b | 141.6 a–d | 841.3 a | 0.168 a,b | 6.3 a |
Flax oil | 64 | 3:18 c | 7.475 b,c | 10.350 a,b | 2.875 a,b | 142.0 a–c | 840.0 a | 0.169 a,b | 3.8 c, d |
Fish oil | 64 | 3:28 a–c | 7.550 a,b | 10.575 a | 3.025 a,b | 141.4 a–d | 841.3 a | 0.168 a,b | 5.8 a,b |
Source: From Serna-Saldivar et al. (2006)
Sample | Water Absorption (%) | Mixing Time (min:sec) | Proof Height (cm) | Bread Height (cm) | Oven Spring (cm) b | Dough Weight (g) | Bread Weight (g) | Bread Weight/Dough Weight (%) | Crumb Texture c |
---|---|---|---|---|---|---|---|---|---|
25 mg DHA | |||||||||
Control | 65.5 | 4:40 a | 10.53 a | 12.33 a,b | 1.80 b,c | 830.7 a | 748.1 c, d | 90.1 b,c | 7.0 a |
Algae oil | 65.5 | 4:35 a | 10.40 a | 12.23 a,b | 1.83 b,c | 836.0 a | 750.9 b–d | 89.8 b,c | 6.5 a,b |
Emulsion-P | 65.5 | 4:32 a,b | 10.28 a | 12.80 a | 2.52 a,b | 834.0 a | 752.1 b,c | 90.2 b,c | 7.0 a |
Emulsion-L | 65.5 | 4:40 a | 10.18 a | 12.33 a,b | 2.15 a–c | 832.8 a | 744.2 d,e | 89.4 c | 6.5 a,b |
Flax oil | 65.5 | 4:40 a | 10.15 a | 12.53 a,b | 2.38 a,b | 831.5 a | 756.0 b | 90.9 a,b | 6.5 a,b |
Fish oil | 65.5 | 4:42 a | 10.60 a | 11.80 b | 1.25 c | 835.5 a | 768.2 a | 92.0 a | 6.0 b |
50 mg DHA | |||||||||
Control | 65.5 | 4:35 a | 11.05 a | 12.60 a,b | 1.55 a,b | 830.8 b,c | 742.8 b,c | 89.4 b–d | 7.0 a |
Algae oil | 65.5 | 4:33 a | 11.23 a | 12.90 a,b | 1.67 a,b | 834.2 b | 739.4 c | 88.6 d | 7.0 a |
Emulsion-P | 65.5 | 4:35 a | 10.83 a,b | 12.48 a,b | 1.65 a,b | 832.7 b,c | 740.6 c | 88.9 c, d | 6.5 a,b |
Emulsion-L | 65.5 | 4:35 a | 10.38 b | 12.38 b | 2.00 a,b | 829.9 c | 738.9 c | 89.0 c, d | 6.0 b |
Flax oil | 65.5 | 4:30 a | 10.83 a,b | 12.83 a,b | 2.00 a,b | 834.7 b | 754.0 a | 90.3 a,b | 6.0 b |
Fish oil | 65.5 | 4:10 b | 10.80 a,b | 13.10 a | 2.30 a | 832.9 b,c | 754.6 a | 90.6 a | 6.3 a,b |
Hydrogenation Methods
These non-selective conditions are often favored when an all-hydrogenated vegetable shortening is being produced. To flatten the melting curve even further, up to 5% fully hardened cottonseed oil is added. Alternatively, the main component vegetable oil may be lightly but selectively hardened to achieve oxidative stability, and then 25–30% of the composition made up by hardened vegetable oil(s) of higher melting point, again to obtain the typical flat melting curve (Teasdale, 1975).
Canola (oil Z, Table 8.22 ) hardened with 0.05% Ni/oil at 135°C and 3.8 atm (Teasdale, 1975) to 71.6 IV (a continuation of “Low-Temperature Hydrogenation” section above) still showed only 31.7% trans isomers with a rise in stearic acid to 18.3%. The SFI 10/21.1/28.7/33.3/40 was 24.5/13.4/8.2/4.5/0.2. This would correspond with a slip melting point of about 35°C. Engelhard (Harshaw Catalysts) with 0.05% Ni/oil, 140°C and 3 atm (oil Y, continuing as in “Low-Temperature Hydrogenation” section above) at 71.2 IV, obtained 39.8°C melting point, 35.4% trans isomers and 18.2% stearic acid. The percent solids by NMR 10/20/30/35/40/45 was 36/20.5/11/8.5/2.5/0.5.
Options for Reducing/Eliminating trans Fatty Acids in Deep Fat Frying and Labeling Implications
Definitions for the Labeling of Edible Fats and Oils in Mexico
“Edible vegetable oil” A deodorized oil that may contain one or several edible vegetable oils such as soybean, canola, corn, cotton, safflower, sunflower, sesame, etc., that is obtained by solvent extraction and is an amber-colored liquid.
“Pure oil of ….” (soybean, canola, corn, safflower, sunflower, etc.)
Amber-colored liquid obtained by solvent extraction or mechanically expelled. If purity is at least 99%, it can be labeled “pure.”
“ Vegetable shortening ” A semisolid fatty product, obtained by processing oilseeds considered edible by the Secretariat of Health (Secretaría de Salud), which are: sesame, cotton, peanut, canola, safflower, coconut, sunflower, corn, palm, palm kernel, and soybean. The vegetable shortenings can be modified by partially hydrogenation alone, by blending vegetable oils and partial hydrogenated vegetable oils, or by interesterification. Additionally, vegetable shortenings may contain up to 15% maximum of fully hydrogenated oils.
“Vegetable shortenings and mixed fats” A semisolid fatty product, obtained by blending edible animal fats (edible tallow, lard, and partially hydrogenated fish oil) and vegetable oils and/or partially hydrogenated vegetable oils. Mixed fats may contain up to 15% maximum fully hydrogenated oils.
Tables 23.4a–d Oils, vegetable shortenings and mixed fats physical and chemical specifications.
Parameters | Soybean Sunflower Canola | Corn | Safflower | Vegetable Oil | ||
---|---|---|---|---|---|---|
FFA as oleic % (max) | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 |
Moisture and volatile matter % (max) | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 |
Saponification index mg KOH/g (min) | 189 | 188 | 182 | 187 | 186 | — |
Color (Lovibond) red (max) | 2 | 1.5 | 2.5 | 4.0 | 1.5 | 3.5 |
OSI Stability 110°C hrs (min) | 6 | 6 | 8 | 6 | 5 | 5 |
Peroxide value meq/kg (max) | 2 | 2 | 2 | 2 | 2 | 2 |
Unsaponificable matter % (max) | 1 | 1 | 1 | 1 | 1 | 1 |
Parameters | Type 1 Bakery Northern Region | Type 2 Bakery Southern Region | Type 3 Confection | Type 4 Cookies | Type 5 All Purpose | Type 6 Cookies | Type 7 Cakes | Type 8 Filling creams |
---|---|---|---|---|---|---|---|---|
FFA as oleic % (max) | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.15 | 0.15 |
Moisture and volatile matter % (max) | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.15 | 0.15 |
Melting Point °C | 46–48 Typ. 50 max. | 50 max. | 50 max. | 50 max. | 50 max. | 50 max. | 50 max. | 50 max. |
Saponification Index mg KOH/g (min) | 175 | 175 | 175 | 175 | 175 | 175 | 175 | 175 |
Lovibond Color-Red (max) | 3.5 | 3.5 | 3.5 | 3.5 | 3.5 | 3.5 | 3.5 | 3.5 |
OSI Stability 110°C Hrs (min) | 20 | 20 | 50 | 30 | 100 | 50 | 30 | 30 |
Peroxide value meq/kg (max) | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 |
Unsaponifiable matter % (max) | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 |
glycerides % (max) | – | – | – | 8.0 | 8.0 |
Parameters | Type 1 Bakery Northern Region | Type 2 Bakery Southern Region | Type 3 Bakery Central Region | Type 4 Bakery Emulsified |
---|---|---|---|---|
FFA as oleic % (max) | 0.05 | 0.05 | 0.05 | 0.15 |
Moisture and volatile matter % (max) | 0.05 | 0.05 | 0.05 | 0.15 |
Melting point °C | 46–48 Typ. (50 max.) | 50 max. | 50 max. | 50 max. |
Saponification Index mg KOH/ g (min) | 175 | 175 | 175 | 175 |
Color (Lovibond) Red (max) | 4.5 | |||
OSI Stability 110°C Hrs (min) | 20 | 20 | 50 | 30 |
Peroxide value meq/kg (max) | 1.5 | |||
Unsaponifiable matter % (max) | 1.0 | 1.0 | 1.0 | 1.0 |
Alpha-monoglycerides % (max) | — | — | — | 8.0 |
Northern Region States | Central Region States | Southern Region States |
---|---|---|
Baja California | Nayarit | Guerrero |
Baja California South | Jalisco | Veracruz |
Sonora | Colima | Tabasco |
Sinaloa | Michoacán | Oaxaca |
Chihuahua | San Luis Potosí | Chiapas |
Coahuila | Hidalgo | Quintana Roo |
Nuevo León | Queretaro | Yucatán |
Durango | Edo de México | |
Tamaulipas | Guanajuato | |
Zacatecas | Puebla | |
Tlaxcala | ||
Morelos | ||
Aguascalientes | ||
Mexico City |
TABLE 23.6a Antioxidants
Active Ingredient | % Maximum |
---|---|
Tocopherols | 0.03 |
Propyl Gallate (PG) | 0.01 |
(BHA) | 0.01 |
(BHT) | 0.02 |
(TBHQ) | 0.02 |
Ascorbyl palmitate | 0.02 |
Substance | % Maximum |
---|---|
Citric Acid (Acido cítrico) | 0.005 |
Phosphoric Acid (Acido fosfórico) | 0.005 |
Similarly, shortenings made from mixed fats, blends of vegetable oils and animal fats, are also known as Type 1 bakery—Northern Region, Type 2 bakery—Southern Region, Type 3 bakery—Central Region and used according to the region and its climatic conditions. Type 4 is bakery shortening that requires emulsifiers in the formula for proper functionality.
Anti-foaming agents: dimethylpolysiloxane; max limit: 10 mg/kg (10 ppm)
Modification of Fats and Oils
6.5.5.1 Temperature.
Hydrogenation is an exothermic process with a little more than 30 kcal being set free per mole of double bond. This is equivalent to a temperature increase of 1.6–1.7 K per lowering of each IV unit. The heat of reaction on the one hand makes heating unnecessary after the activation energy has been introduced. On the other hand it makes it necessary to cool quickly and in a well-controlled manner so that the reaction does not “run away” and follows the temperature pattern foreseen. Like any other chemical reaction, hydrogenation is temperature dependent and the reaction rate increases in direct proportion to temperature.
The temperature dependence of the reaction rate is true not only for the reaction itself but also for all side reactions, including such effects as an increase in reaction rate so that a considerable amount of by-products are formed, or a temperature higher than that at which they start running. Besides this direct influence on the reaction, an increase in temperature manifests itself in higher solubility of hydrogen (see Chapter 6.5.5.2) and a decrease in viscosity, which improves mass transfer (see Chapter 6.5.5.3).
Below an excerpt of a table is reproduced in which Patterson (1994 ; courtesy of AOCS) showed the temperature influence on hydrogenation.
100–110°C | Partial hydrogenation of vegetable oil to reduce the majority of linoleic acid; minimum formation of trans-isomers. |
∼120°C | The first of two stages in a hydrogenation that seeks minimum solids content with flavor stability. |
150°C | (a) Not to be exceeded until a certain IV drop has been attained for oils containing substantial amounts of linolenic acid and even more unsaturated groups so as to avoid cyclization of hydrocarbon chain. |
(b) The popular level at which to conduct hardening of the all-hydrogenated vegetable shortening with prolonged melting range. | |
160°C | (a) Above this temperature nickel carbonyl is completely unstable; hence, the poisoning effect of CO on Ni ceases. |
(b) Above this temperature, migration of double bonds and formation of trans-isomers are encouraged to reach their equilibrium level. | |
180°C | The usual level for edible oil hydrogenation, which may follow a set amount at a lower temperature for reasons given above. If a relatively quick melting range is needed, this temperature should be used as much as possible after any other control requirements have been met. At this level, polyunsaturates diminish markedly. |
200°C | Should not be exceeded for edible product hardening. Above this, the risk of worsening color and increase in free fatty acids grows. |
210°C | Maximum for the most technical or nonedible hydrogenations; above this temperature, hardening rate may even be increasingly retarded. |
240°C | Acceptable maximum for hydrogenation of dimer and trimer fatty acids. |
The solid fat content of the end product from trial I (200°C) is lower at temperatures below 30°C, but higher at temperatures above 30°C as a result of the increased stearine formation at low hydrogenation temperature. Coenen (1976) gave the starting point for the temperature increase dependent on the iodine value (RID = refractive index drop):
Ingredients for Biscuits: An Introduction
16.3 Dough Fats and Oils
16.3.1 Vegetable Fats
Fats are a vitally important ingredient in achieving the texture, mouth feel and bite of the biscuit. The fats are produced from good-quality crude oils by a process of refining, bleaching and deodorising. They are produced primarily from vegetable oils but may contain hydrogenated fish oils.
Typical blended vegetable dough fats are solid at ambient temperature and melt over a wide temperature range. Most fats used in biscuit making are melted below blood temperature (36.9°C), and this avoids a waxy mouth feel. Fats are specified with a solid fat index (SFI), which indicates the percentage of solid fat present in the total fat. A vegetable shortening typically has an SFI of around 21% at 25°C and 17% at 30°C ( Fig. 16.1 ).
Recipes with high-fat contents require little water for producing a cohesive dough and produce soft, short doughs. During mixing, the fat coats the flour particles, and this inhibits hydration and interrupts the formation of the gluten. Fats also tend to inhibit the leavening action of the carbon dioxide diffusion in the dough during baking, and this produces a softer, finer texture. Where both fat and sugar amounts in the recipe are high, they combine to make a soft, syrupy, chewy texture.
Typically, crackers and hard sweet biscuit doughs, which are sheeted and cut, have fat contents of 10%–22% of the flour by weight. Rotary moulded doughs may have 17%–30% of fat and wire-cut and deposited cookie doughs 25%–60%.
16.3.2 Butter
Butter is used for its shortening and flavour. The flavour of the butter is complemented by sugar and vanilla during baking and gives a distinctive flavour and aroma.
16.3.3 Coconut Oil
Coconut oil is typically used for oil spraying. The oil is hydrogenated, neutralised, deodorised and bleached. Melting point, 32–34°C.
Culinary Arts Basics: Healthy Cooking Fundamentals
Recipes Makeovers: Ingredient Reductions, Substitutions, Eliminations, and Technique Changes
Broccoli with Mustard Sauce (Before Makeover)
Ingredients
1½ pounds fresh broccoli, washed and trimmed
1 tablespoon Dijon mustard
Directions
Cut broccoli into 3-inch pieces, including stalks and florets.
Place broccoli into boiling water; cook about 7 minutes.
Remove to platter; keep warm.
Combine mayonnaise with butter and mustard; spoon sauce over broccoli.
Yield: 6 servings
Calories per serving: 233 calories
Percentage of calories from fat: 83%
Broccoli with Mustard Sauce (After Makeover)
Ingredients
1½ pounds fresh broccoli, washed and trimmed
¾ cup reduced-fat mayonnaise
½ tablespoon Dijon mustard
Dash reduced-sodium soy sauce
Reduced-fat dairy milk (to thin sauce)
Directions
Cut broccoli into 3-inch pieces, including stalks and florets.
Steam broccoli for about 7 minutes, or until fork-tender. Remove to platter; keep warm.
Combine reduced-fat mayonnaise with mustard, sugar and soy sauce.
Whisk milk into sauce to thin; spoon over broccoli.
Yield: 6 servings
Calories per serving: 64 calories
Percentage of calories from fat: 19% ●
Changed techniques: Boiling to steaming (reduces nutrient loss).
New and improved techniques: Whisked sauce to incorporate milk and thin (adds nutrients; decreases calories).
Reduced, removed or replaced ingredients: Replaced mayonnaise with reduced-fat mayonnaise; reduced Dijon mustard (reduces fat, sodium).
Rebuilt flavor: Added sugar (for balance), reduced-sodium soy sauce (for umami taste).
Fruit Nut Muffins (Before Makeover)
Ingredients
2 cups all-purpose (AP) flour
1½ cups white granulated sugar
2 teaspoons baking soda
1 teaspoon ground cinnamon
1 cup vegetable oil
½ cup shredded coconut
1 teaspoon vanilla extract
2 cups apples, peeled and grated
½ cup carrots, peeled and grated
½ cup walnuts, chopped
Directions
Preheat oven to 350°F.
Grease well with vegetable shortening two (12-cup) muffin tins.
Sift dry ingredients together into large bowl; set aside.
Combine carrots, raisins, walnuts, apples and coconut in large bowl.
Whisk eggs, oil and vanilla together in medium bowl.
Gently stir carrot mixture into dry ingredients; coat to cover.
Add liquid ingredients; stir just to combine.
Spoon mixture into greased muffin tins.
Bake about 25 minutes.
Yield: 18 large muffins
Calories per muffin: 520 calories
Percentage of calories from fat: 47%
Fruit Nut Muffins (After Makeover)
Ingredients
Nonfat cooking spray
1 cup all-purpose (AP) flour plus 1 cup whole wheat flour (OR ½ cup whole wheat flour plus ½ cup whole wheat pastry flour)
¾ cup white granulated sugar
2 teaspoons baking soda
1 teaspoon ground cinnamon plus ½ teaspoon each ground nutmeg and allspice
2 large eggs plus 2 egg whites
½ cup vegetable oil plus ½ cup unsweetened applesauce
2 teaspoons vanilla extract
2 cups unpeeled apples, grated
¾ cup unpeeled carrots, grated
2 tablespoons walnuts, chopped
Directions
Preheat oven to 350°F.
Prepare muffin tins with nonfat cooking spray.
Sift dry ingredients together into large bowl; set aside.
Combine carrots, raisins, walnuts and apples in large bowl.
Vigorously whisk egg whites in medium bowl.
Whisk eggs, oil and vanilla together in medium bowl.
Gently stir carrot mixture into dry ingredients; coat just to cover.
Add liquid ingredients; stir just to combine.
Spoon mixture into prepared muffin tins.
Bake in nonstick muffin tins about 22 to 25 minutes.
Yield: 18 large muffins
Calories per muffin: 410 calories
Percentage of calories from fat: 40% ●
Changed techniques: Left skin on apples and carrots (improves fiber).
New and improved techniques: Whisked egg whites (increases rise); used nonfat cooking spray; baked in nonstick muffin tin (reduces fat, calories).
Reduced, removed or replaced ingredients: Used one-half whole wheat flour and one-half white AP flour (improves fiber, nutrients); decreased salt and walnuts (decreases sodium and fat); substituted two egg whites for one whole egg (decreases cholesterol); substituted ½ cup unsweetened applesauce for ½ cup vegetable oil (decreases fat).
Rebuilt flavor: Added nutmeg and allspice, one additional teaspoon vanilla, ¼ cup carrots.
Bite on This
Healthy Alternatives for Fat in Cooking and Baking
The reason to cut back on fat as an ingredient in cooking and baking is that fat is calorie-dense and it contributes to obesity. Moreover, total fat and saturated fat are implicated in degenerative diseases such as certain cancers, coronary heart disease, diabetes and hypertension. While some fat is essential to the diet, these healthful alternatives will help to trim excess fat in cooking and baking.
Microstructure and its relationship with quality of confectionary and bakery products
11.3.1 Bakery and confectionary ingredients
Apart from the aforementioned ingredients, there are numerous functional additives that are used to facilitate processing, to compensate for variation in raw materials functionality, to guarantee constant quality, and to preserve freshness and product properties. In this category one may cite enzymes or processing aids such as amylase, protease, oxidase, and transglutaminase, among others ( Rosell and Dura, 2015 ). Transglutaminase, alpha-amylase, xylanase, and protease affect significantly the viscoelastic properties of dough and can change bread quality parameters such as volume or crumb structure ( Caballero et al., 2007 ). The industrialization of the breadmaking process and the consumer demand for high quality and longer shelf life have increased the use of those processing aids and some other additives like emulsifiers that affect starch and proteins, producing softness, longer shelf-life, and increase in the volume, stability, and structure ( De Leyn, 2014a ). Finally, other modifiers that are useful in the production of these products are hydrocolloids like xanthan gum, hydroxypropyl methylcellulose (HPMC), guar gum, and others. They modify the rheology and the texture of the products, and their functionality is mainly related to their ability to bind water, and subsequently changes in dough rheology, freshness, and shelf-life have been described ( Poonnakasem et al., 2015, Bárcenas and Rosell, 2005, Correa et al., 2010 ). Similarly, in special types of products like gluten-free, the functionality of the hydrocolloids is essential because they are acting as gluten replacers, and thus give the structure of the baked products ( Lazaridou et al., 2007, Demirkesen et al., 2010, Rosell et al., 2001 ).
COOKIES, BISCUITS, AND CRACKERS | Chemistry of Manufacture
Shortenings and Emulsifiers
Fats are the third major component used in biscuit making, but are considerably more expensive than flour or sugar. Besides being used in the doughs, fats or oils are used as surface sprays, in cream fillings and coatings (such as chocolate), and as release agents. In dough, they tenderize (impart shortness to) the crumb by being dispersed in films and globules during mixing, which interferes with gluten development. Shortening also aids dough aeration during the creaming step. The overall effect improves palatability, extends shelf life, improves flavor and, of course, adds caloric energy.
Animal fats, primarily lard, were originally used by bakers. Compound (part animal and part vegetable source) shortenings and all- vegetable shortenings were then developed. Soybean, cottonseed, palm, coconut, and peanut oils are the primary vegetable sources used in shortening production. Continued advancements in purification and hydrogenation developed vegetable oils that could replace animal fats with equal or better flavors, melting points, consistency, and availability. Because of current health concerns, most bakeries have switched to fats of plant origin. The hydrogenation process used to convert liquid vegetable oils into plastic shortenings suitable for entrapping the air and controlling spread is known to generate some transfatty acids which are sometimes believed to be harmful. This is not normally a major concern for cookie producers or consumers however, with the possible exception of sandwich cookies containing a large amount of a shortening-based filling.
Surfactants (surface-active agents) are given many names by bakers: crumb softeners, emulsifiers, antistaling agents, or dough conditioners. Examples include lecithin, mono- and diglycerides, diacetyl tartaric acid esters of fatty acids, polysorbate 60 and sodium stearloyl 2-lactylate. Surfactants at low concentrations act to modify the surface behaviors of liquids. They are believed to complex with the protein–starch structure, thereby strengthening the film, and to delay dough setting during baking. The behavior of surfactants is due to their amphoteric (possessing both hydrophilic and hydrophobic molecular regions) properties. Their behavior varies according to the charges on the molecules, their solubility, the hydrophilic–lipophilic balance, and the type of functional groups involved.
Surfactants modify dough consistency and reduce stickiness by reacting with the gluten. The greasiness of biscuits with high fat content is also reduced by surfactants. Crumb softeners also complex with the starch molecules to delay retrogradation and texture staling. The grain pattern and volume of the finished product are often improved, as surfactants increase dough gas-retaining properties.
Antioxidants retard the development of oxidative rancidity during product storage. All fats are subject to oxidative or hydrolytic rancidity, which causes objectionable odors and flavors, but antioxidants delay these reactions from occurring within the biscuits’ shelf life. They are usually added to bulk shortenings and are important for preserving low-moisture products, which are expected to remain edible for several months.