Обзор четырех недорогих матплат на базе чипсета AMD B350: разогнать нельзя переплатить
⇡#ASUS PRIME B350-PLUS
Все четыре матплаты, рассмотренные в этой статье, сильно похожи друг на друга. Случай, когда устройства с одинаковой ценой обладают схожим уровнем функциональности, достаточно распространен. И все же очень просто выделить несколько мелочей, которые могут повлиять на конечный выбор покупателя.
ASUS PRIME B350-PLUS
Вот у PRIME B350-PLUS, как и у ASRock Fatal1ty AB350 Gaming K4, тоже распаяно шесть слотов расширения. Однако инженеры ASUS снабдили свою модель двумя разъемами PCI. Они работают за счет моста ASMedia ASM1083. Если в системе используется процессор Ryzen, то PEG-порты работают в режиме x16+x4. Естественно, у «Прайма» есть поддержка технологии AMD CrossFire. При этом второй порт PCI Express x16 реализован через чипсет, а не через процессор, как это сделано в материнской плате ASRock. Если в системе используется Bristol Ridge, то эти же самые разъемы действуют по формуле x8+x4. Второй разъем PCI Express x16, который на самом деле работает в режиме x4, делит линии с двумя портами PCI Express x1. Слоты расширения, кстати, имеют усиленные точки пайки контактов. С их помощью увеличивается прочность и усиливается надежность крепления видеокарты.
В целом разводка интерфейсов у ASUS PRIME B350-PLUS выполнена грамотно, даже несмотря на то, что сокет AM4 расположен чуть ниже (ближе к PEG), чем обычно. Например, широчайший Thermalright Archon SB-E X2 ближний разъем PCI Express x16 не перекрывает. Следовательно, пользователь может абсолютно спокойно установить любой процессорный кулер, а также дискретную видеокарту. При этом графический ускоритель не перекроет M.2-накопитель, если таковой будет использоваться в системном блоке.
А вот и первая серьезная претензия к ASUS PRIME B350-PLUS — на печатной плате размещено всего три 4-контактных разъема под вентиляторы. Смотрите сами: в тестовом стенде используется необслуживаемая СВО Cooler Master MasterLiquid 120 с двумя вентиляторами. Получается, что при установке только одной этой системы охлаждения будут заняты все три порта, так как к матплате необходимо подключить еще и помпу. А ведь в корпусе форм-фактора Midi-Tower необходимо подключить еще и один-два-три корпусных вентилятора. Как сказал бы один политический деятель 90-х годов, обидно, понимаешь. Радует, что все 4-штырьковые разъемы работают и в режиме PWM, и в режиме DC, то есть материнская плата может управлять частотой вращения вентиляторов как с ШИМ, так и без нее.
Подсветка присутствует, светодиодами оснащена полоса, обрамляющая звуковую подсистему, и защелки PCI Express x16. Тип и цвет подсветки настраиваются в меню LED Control программы AI Suite 3. Рядом с батарейкой BIOS, которая распаяна непривычно близко к процессорному гнезду, установлена 4-пиновая колодка для подключения подсветки фирменного кулера AMD Wraith Spire или RGB-ленты.
На оборотной стороне платы никаких элементов не предусмотрено.
В отличие от ASRock, в своем бюджетном варианте инженеры ASUS не стали «городить» массив из нескольких M.2-слотов для установки твердотельных накопителей. Зато он расположен в очень удачном месте, так как SSD не будет перекрыт видеокартой. Учтите, что при использовании M.2-разъема будут отключены порты SATA_5 и SATA_6 — они специально распаяны поодаль от остальных колодок.
На панели ввода/вывода расположены практически все три версии разъемов USB, которые поддерживает B350-чипсет и CPU: USB 2.0, USB 3.0 и USB 3.1. Для полного счастья разве что не хватает новомодного порта C-типа, но для этого инженерам тайваньской компании пришлось бы использовать дополнительный контроллер. К слову, видеовыход D-Sub у ASUS PRIME B350-PLUS работает за счет микросхемы Realtek RTD2166.
Среди внутренних интерфейсов присутствуют два коннектора USB 2.0 и один USB 3.0, а также разъемы COM, S/PDIF Out и F-аудио.
Аудиоподсистема, в основе которой лежит чип Realtek ALC887, дополнена четырьмя японскими конденсаторами Nichicon. К тому же левый и правый каналы расположены на разных слоях печатной платы.
Подсистема питания ASUS PRIME B350-PLUS насчитывает шесть фаз, которые управляются ШИМ-контроллером ASP1106. Четыре канала предназначены для ядер центрального процессора. На каждую такую фазу приходится по одному дросселю и по три силовых элемента NTMFS4C09B и NTMFS4C06B от ON Semiconductor. Еще два канала обеспечивают работу CPU NB/SoC Voltage. Здесь на каждую фазу тоже приходится по одной катушке индуктивности, но уже по четыре полевых транзистора. Все MOSFET конвертера питания снабжены дополнительным охлаждением в виде двух небольших алюминиевых радиаторов.
Нагрев ASUS PRIME B350-PLUS в номинальном режиме
Под нагрузкой, без разгона, VRM-зона греется не сильно — температура дросселей и полевых транзисторов меняется без дополнительного охлаждения в диапазоне от 70 до 86 градусов Цельсия.
В случае с ASUS PRIME B350-PLUS мы можем следить за температурами центрального процессора и за нагревом подсистемы питания материнской платы.
Мин./макс. значение, В
Шаг, В
DRAM Voltage
1,2/1,8
0,005
1.05V SB Voltage
1,05/1,1
0,05
2.5V SB Voltage
2,5/2,55
0,05
CPU 1.80V Voltage
1,8/1,85
0,05
VTTDDR Voltage
0,6/0,8
0,005
VPP_MEM Voltage
2,5/2,8
0,005
Разгон процессора при помощи ASUS PRIME B350-PLUS
В итоге ASUS PRIME B350-PLUS продемонстрировала лучшие результаты в разгоне. К сожалению, перегрев VRM-зоны материнской платы не позволил Ryzen 7 1700 работать стабильно на частоте 4 ГГц, но на частоте 3,9 ГГц чип прошел испытание огнем Prime95. Для достижения такого результата мне пришлось в режиме Offset увеличить напряжение CPU на 0,2125 В и выставить параметр Load-Line Calibration в режим Medium.
К сожалению, заставить работать в стенде с ASUS PRIME B350-PLUS комплекты оперативной памяти на частоте выше 2666 МГц у меня так и не получилось. Не помогли ни активация XMP-режимов, ни самостоятельный подбор задержек и напряжения NB/SOC Voltage.
Нагрев ASUS PRIME B350-PLUS в разгоне
Как видите, без применения дополнительного охлаждения дроссели и полевые транзисторы ASUS PRIME B350-PLUS заметно греются, но, например, не так сильно, как на ранее рассмотренной ASRock Fatal1ty AB350 Gaming K4.
Обзор 7 материнских плат AMD B550 дешевле 10 000 рублей: есть ли достойные устройства в этом ценовом сегменте?
⇡#ASUS PRIME B550M-A
Интересно, что в продаже вы встретите сразу три версии ASUS PRIME B550M-A. В сегодняшнем тестировании приняла участие самая простая модификация платы, но в рознице можно найти еще такие модели, как PRIME B550M-A (Wi-Fi) и PRIME B550M-A AC. Думаю, вы прекрасно понимаете, чем эти «мамки» отличаются от героя обзора.
Мы имеем дело с полноразмерной платой форм-фактора mATX, что не может не радовать. Первое, что приятно удивляет, — это разводка компонентов платы, которая выполнена на оценку «отлично». Это особенно заметно, если вы будете использовать в системе видеокарту с двухслотовым кулером — сейчас объясню почему.
Если я установлю в стенд видеокарту с трехслотовой СО, то она, нет, не перекроет все четыре SATA-порта, но провод подключения SSD/HDD расположится впритык к вентиляторам ускорителя графики. Некоторые же адаптеры, как мы знаем, еще и провисают под своей тяжестью. Возможно, вместе с ASUS PRIME B550M-A не будут использовать такие монструозные видеокарты? Очень может быть. Только с выходом новых серий AMD и NVIDIA карточки с кулерами-толстяками прочно войдут в обиход геймера. Как бы там ни было, рекомендую использовать для подключения накопителя SATA-кабель с г-образным разъемом.
ASUS PRIME B550M-A лишена многих атрибутов, которые есть у более дорогих «сородичей». Основной PEG-порт не армирован, слоты M.2 не имеют радиаторов для охлаждения SSD, а I/O-панель не получила пластикового кожуха и подсветки. Тем не менее на печатной плате есть сразу два M.2-слота. Основной расположен между сокетом и разъемом PCI Express x16. Значит, установленный в него SSD не будет греться от видеокарты, но будет обдуваться вентилятором процессорного кулера. А вот второму M.2 повезло меньше. Напомню, что в платах B550 только один порт для NVMe SSD подключен к процессорным линиям PCI Express и работает в режиме x4 4.0 при использовании чипов Ryzen поколений Zen 2 и Zen 3. Второй M.2 «питается» чипсетными линиями PCI Express 3.0 и делит их с разъемами SATA 6 Гбит/с. В частности, именно из-за этого у ASUS PRIME B550M-A только четыре SATA-порта на плате.
Материнка оснащена четырьмя 4-контактными коннекторами для подключения вентиляторов. Разъемы разделены на три группы. Расположение, на мой взгляд, выбрано весьма удачно, потому что именно в районе процессорного гнезда их требуется больше всего. Подключенные к ASUS PRIME B550M-A вентиляторы могут работать как в режиме PWM, так и в режиме DC, то есть материнская плата способна управлять частотой вращения «карлсонов» с тремя и четырьмя контактами. Правда, кривую управления оборотами в BIOS можно задать только для вентиляторов, подключенных к коннекторам CPU FAN, CHA1 FAN и CHA2 FAN.
Внутренние порты ASUS PRIME B550M-A:
За проводную сеть в устройстве отвечает гигабитный контроллер Realtek RTL8111H, а за звук — Realtek ALC887. Контроллеры — простенькие, но аудиотракт получил LED-подсветку, щепотку аудиоконденсаторов и разведение каналов по разным слоям PCB.
Подсистема питания ASUS PRIME B550M-A насчитывает шесть фаз, причем каналы для работы SoC-составляющей сдвоены. Используются следующие элементы:
Часть конвертера, отвечающая за работу ядер ЦП, охлаждается алюминиевым радиатором среднего размера.
ASUS PRIME B550M-A
Напряжение, мин./макс. значения и шаг, В
VDDCR CPU Voltage
0,75/1,55
0,00625
VDDCR CPU Voltage Offset
-0,5/0,45
0,00625
VDDCR SOC Voltage
0,75/1,55
0,00625
VDDCR SOC Voltage Offset
-0,5/0,5
0,00625
VDDG CCD Voltage Control
0,7/1,8
0,001
VDDG IOD Voltage Control
0,7/1,8
0,001
CLDO VDDP Voltage
0,7/1,8
0,001
DRAM Voltage
1,2/1,8
0,005
1.05V SB Voltage
1,05/1,1
0,05
2.5V SB Voltage
2,5/2,55
0,05
CPU 1.80V Voltage
1,8/1,85
0,05
VTTDDR Voltage
0,6/0,8
0,005
VPP_MEM Voltage
2,5/2,8
0,005
Load-Line Calibration
CPU Load-Line Calibration (уровни)
4
VDDSOC Load-Line Calibration (уровни)
3
Датчики температуры
CPU Temperature, CPU Package Temperature, M/B Temperature
Дополнительно
Настройка первичных таймингов
Предусмотрена
Настройка вторичных и третичных таймингов
Предусмотрена
Профили настроек BIOS
Есть, 8 слотов
Очистка SSD
Предусмотрена
Настройка вращения вентиляторов
Предусмотрена (Qfan Control)
Изменение BCLK
Предусмотрено, 96-118 МГц с шагом 0,0625 МГц
Автоматический разгон процессора
OC Tuner
Автоматический разгон памяти
D.O.C.P.
Обновление BIOS без включения платы
Не предусмотрено
Подробно про возможности ASUS UEFI BIOS вы можете прочитать здесь. Прошивка PRIME B550M-A, конечно, по количеству опций разгона не дотягивает до абсолютного флагмана — ROG STRIX B550-E GAMING. Однако у платы есть все необходимое для разгона центрального процессора в домашних условиях — по набору напряжений она так вообще практически не уступает гораздо более продвинутой плате. Разве что уровней LLC здесь заметно меньше.
⇡#ASUS PRIME B550M-K
Если присмотреться повнимательнее, то станет ясно, как из PRIME B550M-A получилась PRIME B550M-K. Неужели буква «К» в названии обозначает именно это слово?
Действительно, K-версия очень сильно похожа на PRIME B550M-A — только на плате не хватает ряда разъемов и прочих элементов. А потому обзор очередной B550-платы, по сути, сводится к описанию различий устройств ASUS.
Так, слоты расширения, разъемы DIMM, M.2-порты и коннекторы SATA 6 Гбит/с оказались нетронутыми, их расположение — тоже. Исчез один 4-пиновый разъем подключения вентиляторов и охлаждение VRM-цепи, да и сам конвертер стал хуже (об этом — чуть ниже). Исчезла и часть внутренних интерфейсов, хотя порты на I/O-панели остались нетронутыми.
В частности, внутренние разъемы ASUS PRIME B550M-K насчитывают:
За проводную сеть и звук в устройстве отвечают все те же контроллеры — Realtek RTL8111H и Realtek ALC887.
Итак, VRM платы стал хуже, хотя речь все еще идет о 6-фазном конвертере питания устройства. Просто в ASUS PRIME B550M-K мосфетов, отвечающих за работу SoC, стало чуть меньше. Ну и нельзя не заметить отсутствия радиатора для фаз ЦП. В остальном же используются те же компоненты:
Что интересно, прошивка упрощенной платы ничем не отличается от BIOS ранее рассмотренной PRIME B550M-A, хотя для K-модели на момент написания статьи была доступна менее «свежая» версия — 1202. И все же четко прослеживается почерк ASUS: производитель не «режет» функциональность прошивок своих устройств, даже совсем бюджетных. Другое дело, что потенциальный владелец PRIME B550M-K вряд ли воспользуется и половиной того, что заложено в ASUS UEFI BIOS. Впрочем, это касается всех без исключения материнских плат.
Разгон оперативной памяти DDR4 на AMD Ryzen и Intel Core
На github.com кто-то заморочился и сделал полноценный гайд по разгону оперативной памяти DDR4 на Intel и AMD Ryzen. А в качестве базовой информации в дополнении к нашему видео он будет полезен каждому.
Делимся переводом, приятного прочтения.
Содержание
Подготовка
Ожидания и ограничения
В этом разделе рассматриваются 3 компонента, влияющие на процесс разгона: микросхемы (чипы памяти), материнская плата и встроенный контроллер памяти (IMC).
Материнская плата
Замечено также, что дешёвые материнские платы могут не разогнаться, возможно по причине низкого качества печатной платы и недостаточного количества слоёв (?).
Микросхемы (чипы памяти)
Отчёты Thaiphoon Burner
По общему мнению, свои отбракованные низкосортные чипы Micron реализует под брендом SpecTek. Многие стали называть этот чип “Micron E-die” или даже просто “E-die”. Если в первом случае ещё куда ни шло, то во втором уже возникает путаница, поскольку подобная маркировка («буква-die») используется у микросхем Samsung, например – “4 Гб Samsung E-die”. Под “E-die” обычно подразумевается чип Samsung, поэтому стоит уточнять производителя, говоря о чипах Micron Rev. E как об “E-die”.
Масштабирование напряжения попросту означает, как чип реагирует на изменение напряжения. Во многих микросхемах tCL масштабируется с напряжением, что означает, что увеличение напряжения может позволить вам снизить tCL. В то время как tRCD и tRP на большинстве микросхем, как правило, не масштабируются с напряжением, а это означает, что независимо от того, какое напряжение вы подаёте, эти тайминги не меняются. Насколько я знаю, tCL, tRCD, tRP и, возможно, tRFC могут (либо не могут) видеть масштабирование напряжения. Аналогичным образом, если тайминг масштабируется с напряжением, это означает, что вы можете увеличить напряжение, чтобы соответствующий тайминг работал на более высокой частоте.
Масштабирование напряжения CL11
На графике видно, что tCL у CJR 8 Гб масштабируется с напряжением почти ровно до 2533 МГц. У B-die мы видим идеально-ровное масштабирование tCL с напряжением.
Некоторые старые чипы Micron (до Rev. E) известны своим отрицательным масштабированием с напряжением. То есть при повышении напряжения (как правило, выше 1,35 В) они становятся нестабильными на тех же таймингах и частоте. Ниже приведена таблица некоторых популярных чипов, показывающая, какие тайминги в них масштабируются с напряжением, а какие нет:
Чип
tCL
tRCD
tRP
tRFC
8 Гб AFR
Да
Нет
Нет
?
8 Гб CJR
Да
Нет
Нет
Да
8 Гб Rev. E
Да
Нет
Да
?
8 Гб B-die
Да
Да
Да
Да
Тайминги, которые не масштабируются с напряжением, как правило необходимо увеличивать с частотой. Масштабирование напряжения tRFC у B-die.
Примечание: Шкала tRFC в тактах (тиках), не во времени (нс).
Ожидаемая максимальная частота
Ниже приведена таблица предполагаемых максимальных частот некоторых популярных чипов:
Чип
Ожидаемая максимальная частота (МГц)
8 Гб AFR
3600
8 Гб CJR
4000*
8 Гб Rev. E
4000+
8 Гб B-die
4000+
* – результаты тестирования CJR у меня получились несколько противоречивыми. Я тестировал 3 одинаковых планки RipJaws V 3600 CL19 8 Гб. Одна из них работала на частоте 3600 МГц, другая – на 3800 МГц, а последняя смогла работать на 4000 МГц. Тестирование проводилось на CL16 с 1,45 В.
Не ждите, что одинаковые, но разнородные по качеству, чипы производителя одинаково хорошо разгонятся. Это особенно справедливо для B-die.
Суть биннинга заключается в разделении производителем полученной на выходе продукции «по сортам», качеству. Как правило, сортировка производится по демонстрируемой при тестировании частоте.
Чипы, показывающие одну частоту, производитель отделяет в одну «коробку», другую частоту – в другую «коробку». Отсюда и название процедуры – “binning” (bin – ящик, коробка).
B-die из коробки «2400 15-15-15» намного хуже чем из коробки «3200 14-14-14» или даже из «3000 14-14-14». Так что не ждите, что третьесортный B-die даст образцовые показатели масштабирования напряжения.
Чтобы выяснить, какой из одинаковых чипов обладает лучшими характеристиками на одном и том же напряжении, нужно найти немасштабируемый с напряжением тайминг.
Просто разделите частоту на этот тайминг, и чем выше значение, тем выше качество чипа. Например, Crucial Ballistix 3000 15-16-16 и 3200 16-18-18 оба на чипах Micron Rev. E. Если мы разделим частоту на масштабируемый с напряжением тайминг tCL, мы получим одинаковое значение (200). Значит ли это, что обе планки – одного сорта? Нет.
А вот tRCD не масштабируется с напряжением, значит его необходимо увеличивать по мере увеличения частоты. 3000/16 = 187,5 против 3200/18 = 177,78.
Как видите, 3000 15-16-16 более качественный чип, нежели 3200 16-18-18. Это означает, что чипы 3000 15-16-16 очевидно смогут работать и как 3200 16-18-18, а вот смогут ли 3200 16-18-18 работать как 3000 15-16-16 – не факт. В этом примере разница в частоте и таймингах невелика, так что разгон этих планок будет, скорее всего, очень похожим.
Спецификация JEDEC указывает (стр. 174), что абсолютный максимум составляет 1,50 В
Напряжения, превышающие приведенные в разделе «Абсолютные максимальные значения», могут привести к выходу устройства из строя. Это только номинальная нагрузка, и функциональная работа устройства при этих или любых других условиях выше тех, которые указаны в соответствующих разделах данной спецификации, не подразумевается. Воздействие абсолютных максимальных номинальных значений в течение длительного периода может повлиять на надежность.
Я бы советовал использовать 1,5 В только на B-die, поскольку известно, что он выдерживает высокое напряжение. Во всяком случае, у большинства популярных чипов (4/8 Гб AFR, 8 Гб CJR, 8 Гб Rev. E, 4/8 Гб MFR) максимальное рекомендуемое напряжение составляет 1,45 В. Сообщалось, что некоторые из менее известных чипов, таких как 8 Гб C-die, имеют отрицательное масштабирование или даже сгорают при напряжении выше 1,20 В. Впрочем, решать вам.
Ниже показано, как самые распространенные чипы ранжируются с точки зрения частоты и таймингов.
Встроенный контроллер памяти (IMC)
IMC от Intel достаточно устойчивый, поэтому при разгоне он не должен быть узким местом. Ну а чего ещё ждать от 14+++++ нм?
Для разгона RAM необходимо изменить два напряжения: System Agent (VCCSA) и IO (VCCIO). Не оставляйте их в режиме “Auto”, так как они могут подать опасные уровни напряжения на IMC, что может ухудшить его работу или даже спалить его. Большую часть времени можно держать VCCSA и VCCIO одинаковыми, но иногда перенапряжение может нанести ущерб стабильности, что видно из скриншота:
предоставлено: Silent_Scone.
Я не рекомендовал бы подниматься выше 1,25 В на обоих.
Ниже – предлагаемые мной значения VCCSA и VCCIO для двух одноранговых модулей DIMM:
Частота (МГц)
VCCSA/VCCIO (В)
3000-3600
1,10 – 1,15
3600-4000
1,15 – 1,20
4000+
1,20 – 1,25
Если модулей больше, и/или используются двуранговые модули, то может потребоваться более высокое напряжение VCCSA и VCCIO.
tRCD и tRP взаимосвязаны, то есть, если вы установите tRCD на 16, а tRP на 17, то оба будут работать с более высоким таймингом (17). Это ограничение объясняет, почему многие чипы работают не очень хорошо на Intel и почему для Intel лучше подходит B-die.
В UEFI Asrock и EVGA оба тайминга объединены в tRCDtRP. В UEFI ASUS tRP скрыт. В UEFI MSI и Gigabyte tRCD и tRP видны, но попытка установить для них разные значения приведет просто к установке более высокого значения для обоих.
Ожидаемый диапазон латентности памяти: 40-50 нс.
В Ryzen 1000 и 2000 IMC несколько привередлив к разгону и может не дать столь же высоких частот, как Intel. IMC Ryzen 3000 намного лучше и более-менее наравне с Intel.
SoC voltage – это напряжение для IMC, и, как и в случае с Intel, не рекомендуется оставлять его в “Auto” режиме. Тут достаточно 1,0 – 1,1 В, поднимать выше смысла нет.
На Ryzen 2000 (а возможно и на 1000 и 3000), вольтаж выше 1,15 В может отрицательно повлиять на разгон.
«На разных процессорах контроллер памяти ведет себя по-разному. Большинство процессоров будут работать на частоте 3466 МГц и выше при напряжении SoC 1,05 В, однако разница заключается в том, как разные процессоры реагируют на напряжение. Одни выглядят масштабируемыми с повышенным напряжением SoC, в то время как другие просто отказываются масштабироваться или вовсе демонстрируют отрицательное масштабирование. Все протестированные экземпляры демонстрировали отрицательное масштабирование при использовании SoC более 1,15 В. Во всех случаях максимальная частота памяти была достигнута при напряжении SoC = GDM вкл CR 1T > GDM откл CR 2T.
У процессоров Ryzen 3000 с одним CCD (процессоры серий ниже 3900X) пропускная способность записи вдвое меньше.
«В пропускной способности памяти мы видим нечто странное: скорость записи у AMD 3700X – у которого скорость записи благодаря соединению кристаллов CDD и IOD составляет 16 байт/такт – вдвое меньше, чем у 3900X. AMD заявляет, что это позволяет экономить электроэнергию, снизить нагрев процессора (TDP), к чему так стремится AMD. AMD говорит, что приложения редко делают чистые операции записи, но в одном из наших тестов на следующей странице мы увидим, как это ухудшило производительность 3700X.»
Ryzen
Латентность (нс)
1000
65-75
2000
60-70
3000
65-75 (1:1 MCLK:FCLK) 75+ (2:1 MCLK:FCLK)
Достаточно высокий FCLK у Ryzen 3000 может компенсировать потери от десинхронизации MCLK и FCLK, при условии, что вы можете назначить MCLK для UCLK.
Разгон
Дисклеймер: потенциал разгона сильно зависит от «кремниевой лотереи» (чип чипу рознь), поэтому могут быть некоторые отклонения от моих предложений.
Процесс разгона достаточно прост и выполняется в 3 шага:
Нахождение максимальной частот
На AMD начинать нужно с 1.10 В SoC. Напряжение SoC может называться по-разному в зависимости от производителя.
Обратите внимание, что это добавочное напряжение. Базовое напряжение изменяется автоматически при увеличении частоты DRAM. Напряжение 0,10 В на частоте 3000 МГц может привести к фактическому напряжению 1,10 В, а 0,10 В на частоте 3400 МГц приводит уже к фактическому напряжению 1,20 В. MSI: CPU NB/SOC.
2. Установите напряжение DRAM 1,4 В. Для планок на чипах Micron/SpecTek (за исключением Rev. E) следует установить 1,35 В.
3. Выставите основные тайминги следующим образом: 16-20-20-40 (tCL-tRCD-tRP-tRAS). Подробнее об этих таймингах читайте тут (на англ.)
4. Постепенно увеличивайте частоту DRAM до тех пор, пока Windows не откажет. Помните об ожидаемых максимальных частотах, упомянутых выше. На Intel, быстрый способ узнать, нестабильны ли вы, это следить за значениями RTL и IOL. Каждая группа RTL и IOL соответствует каналу. В каждой группе есть 2 значения, которые соответствуют каждому DIMM. Используйте Asrock Timing Configurator. Поскольку у меня обе планки стоят во вторых слотах каждого канала, мне нужно посмотреть на D1 в каждой группе RTL и IOL. Значения RTL у планок не должны разниться между собой более чем на 2, а значения IOL более чем на 1.
В моём случае, RTL разнятся ровно на 2 (53 и 55), а значения IOL не разнятся вовсе (7 у обоих планок). Все значения в пределах допустимых диапазонов, однако имейте в виду, что это ещё не значит, что всё действительно стабильно.
На Ryzen 3000 – убедитесь, что частота Infinity Fabric (FCLK) установлена равной половине вашей действующей частоты DRAM.
5. Запустите тест памяти на свой выбор.
6. При зависании/краше/BSOD, верните частоту DRAM на ступень ниже и повторите тестирование.
7. Сохраните ваш профиль разгона в UEFI.
8. Теперь вы можете либо попытаться перейти на ещё более высокую частоту, либо начать подтягивать тайминги. Ее забывайте об ожидаемых максимальных частотах, о которых мы говорили ранее. Если вы достигли пределов возможностей чипа и/или IMC, то самое время заняться оптимизацией таймингов.
Пробуем повысить частоты
2. Увеличьте основные тайминги до 18-22-22-42. 3. Повысьте вольтаж DRAM до 1,45 В. 4. Выполните шаги 4-7 из раздела «Нахождение максимальной частоты». 5. Выполните оптимизацию («подтягивание») таймингов.
Дополнительно: Тайминги и частота — разрушаем мифы
Оптимизация таймингов
Обязательно после каждого изменения запускайте тест памяти и бенчмарк-тест, чтобы убедиться в повышении производительности.
На процессорах Ryzen 3000 с одним CCD пропускная способность записи должна составлять 90-95% от половины теоретической максимальной пропускной способности. Можно достичь половины теоретической максимальной пропускной способности записи. См. здесь (англ.)
2. Я бы рекомендовал для начала подтянуть некоторые второстепенные тайминги в соответствии с таблицей ниже, поскольку они могут ускорить тестирование памяти.
Тайминги
Надёжно (Safe)
Оптимально (Tight)
Предельно (Extreme)
tRRDS tRRDL tFAW
6 6 24
4 6 16
4 4 16
tWR
16
12
10
3. Далее идут основные тайминги (tCL, tRCD, tRP).
4. Далее идёт tRFC. По умолчанию для чипов 8 Гб установлено значение 350 нс (обратите внимание на единицу измерения).
Ниже приведена таблица типичных значений tRFC в нс для наиболее распространенных чипов:
Чип
tRFC (нс)
8 Гб AFR
260-280
8 Гб CJR
260-280
8 Гб Rev. E
300-350
8 Гб B-die
160-180
5. Оставшиеся второстепенные тайминги я предлагаю выставить следующим образом:
Тайминг
Надёжно (Safe)
Оптимально (Tight)
Предельно (Extreme)
tWTRS tWTRL
4 12
4 8
—
tRTP
12
10
8
tCWL
tCL
tCL-1
tCL-2
На Intel значения таймингов tWTRS/L следует сначала оставить в “Auto”, изменяя вместо них значения tWRRD_dg/sg соответственно. Уменьшение tWRRD_dg на 1 приведет к уменьшению tWTRS на 1. Аналогично с tWRRD_sg. Как только они достигнут минимума, вручную установите tWTRS/L.
6. Третьестепенные тайминги:
Пользователям AMD будет полезен этот текст (англ.)
Тайминг
Надёжно (Safe)
Оптимально (Tight)
Предельно (Extreme)
tRDRDSCL tWRWRSCL
4 4
3 3
2 2
Пользователям Intel следует настраивать третьестепенные тайминги группой за раз, как видно из таблицы предлагаемых мной значений.
А тут тайминги на B-die, к сведению.
tREFI – это тоже тайминг, позволяющий повысит ьпроизводительность. В отличие от всех других таймингов, чем выше его значение – тем лучше.
Не стоит слишком увлекаться им, поскольку перепады температур окружающей среды (например, зима-лето) могут быть достаточными для возникновения нестабильности.
7. Также можно увеличить напряжение DRAM, чтобы ещё больше снизить тайминги. Вспомните про масштабирование напряжения чипов и максимальное рекомендованное повседневное напряжение, о чём мы говорили выше.
Дополнительно: Настройка таймингов DRAM на ASUS ROG MAXIMUS XI APEX
Дополнительные советы
Увеличение CLDO_VDDP похоже влияет положительно на частотах выше 3600 МГц, так как, по-видимому, улучшается гибкость и, следовательно, становится меньше ошибок.