xl4015 или lm2596 что лучше
Подключаем правильно светодиоды в автомобиле
В последние несколько лет, многие владельцы используют для стайлинга своего автомобиля различные типы светодиодов. Технологии изготовления светодиодов постоянно совершенствуются, но в большинстве случаев это не спасает светодиоды от их быстрого выхода из строя. Как следствие частично перегоревшие светодиоды в подсветке интерьера или например в LED задних фонарях (оригинальные фонари этим не страдают, т.к. имеют серьезную защиту и по току и по напряжению).
Грубо говоря, светодиоды можно условно поделить на два вида: маломощные и мощные. Первый вид широко используется в различных светодиодных лентах, матрицах, LED-лампах и в готовых световых приборах, таких как модернизированные фонари. Второй вид как правило используется в лампах головного света и в дневных ходовых огнях.
Объединяет все эти устройства одно. В подавляющем большинстве случаев все они рассчитаны на стабилизированный ток и напряжение, которые в бортовой сети автомобиля как правило не встречаются. Нормальное напряжение в автомобиле может колебаться от 11,7В при заглушенном двигателе, до 14,8В при заведенном двигателе.
Немного теории.
Напряжение (падение напряжения) типичного светодиода – 3,5В. В зависимости от цвета это может быть: для желтых и красных светодиодов — 2 — 2,5В; для синих, зеленых, белых — 3-3,8В. Типовой ток маломощного светодиода – 20мА, мощного – 350мА.
Светодиод питается током и у него нет такого параметра, как напряжение, но есть параметр падение напряжения. Т.е. какое напряжение на нем теряется. Если на светодиоде написано: 20мА 3,5В, то это значит что ему надо не больше 20 мА тока и при этом на нем потеряется 3,5В (т.е. напряжение после светодиода упадет на 3,5В).
Для ограничения тока на LED-устройства устанавливаются резисторы, но не стоит забывать, что устройства рассчитаны на напряжение ровно 12В и при возрастании напряжения, будет возрастать и ток. Как итог, светодиод быстро перегреется и сгорит.
Итак, как мы выяснили выше, простейшим драйвером (стабилизатором тока) является резистор и устройства рассчитаны на стабилизированное напряжение 12В, которые практически не встречается в бортовой сети автомобиля. Соответственно для маломощных диодов, которые массово используются в автомобилях, необходимо всего одно устройство — стабилизатор напряжения.
Проверенным и доступным на сегодняшний день является DC–DC понижающий преобразователь LM2596, который можно купить на Aliexpress за смешные 50₽. Принцип его работы очень прост. При подаче на вход этого импульсного стабилизатора напряжения до 40В, на выходе всегда будет ровно 12В (значение устанавливается вручную), а ток будут подаваться ровно такой, какой нужен для питания светодиодов.
Именно такие стабилизаторы напряжения я использую для LED-стайлинга своих автомобилей. Корпус подобрать не сложно. Я использую стандартные корпуса, купленные в магазине Чип и Дип. При желании корпус можно сделать герметичным для использования при всепогодных условиях.
Для питания мощных светодиодов, стабилизатора напряжения недостаточно и необходимо устанавливать драйвер (стабилизатор тока). Один из самых доступных готовых драйверов собран так-же на LM2596 и его так-же легко купить на Aliexpress. От DC-DC преобразователя отличается тем, что можно выставить не только стабилизированное напряжение на выходе, но и стабилизированный ток. Подбирая драйвер для мощных светодиодов, нужно обязательно учитывать его максимальный ток, иначе тока может просто не хватить или драйвер будет чрезмерно греться.
Как вариант, токовый драйвер можно собрать самостоятельно, например на основе микросхемы LM317. Схема максимально простая, но потребуется подбор резистора непосредственно под конкретное устройство, в зависимости от мощности установленных в него светодиодов.
Я уже серьезно заморочил голову некоторым читателям, поэтому подведем итог.
Если вы хотите продлить жизнь установленным в автомобиле светодиодам или последовательно-соединенным сборкам (кластерам), то следуйте простым правилам:
— для каждого светодиода или кластера необходимо использовать свой ограничитель тока: резистор (вполне достаточно для маломощных сборок) или драйвер (для мощных),
— для маломощных светодиодов или кластеров с током до 350мА, всегда ставим стабилизатор напряжения на каждую цепь,
— для мощных светодиодов или кластеров с током свыше 350мА, всегда ставим драйвер (стабилизатор тока) на каждую цепь.
При соблюдении этих простых правил, ваши светодиоды будут гореть долго и радовать вас своей магией света.
Всем удачи и добра.
«Стоп-габарит» на основе регулируемого стабилизатора XL4015
Собственно — вот. Микросхема регулируемого стабилизатора напряжения очень схожа по функционалу с LM2596, которую многие так «полюбили», отличается только лишь отсутствием прямого вывода отключения питания микросхемы и, собственно, максимальным током.
Даташит на XL4015
Естественно, как вы знаете, подключать к таким стабилизаторам напряжения нужно резистивную схему соединения светодиодов…
Транзистор, коммутирующий дополнительный подстроечный резистор «Стоп» — можно заменить простым реле (это уж кому как удобнее и проще)…
Сначала настраивается желаемая яркость (т.е. подстраивается выходное напряжение) светодиодного модуля для режима «Габарит», а потом — для режима «Стоп»…
При входящем напряжении на стабилизатор 14,5-15В и выходном напряжении 12В при нагрузке в 3А — силовые элементы стабилизатора не переходят границы дозволенного по нагреву… На 4,5А — не пробовал давать нагрузку, но думаю, что этого будет многовато для элементов драйвера… Защиты от КЗ на выходе — нет, будьте внимательны… В целом — мне по нраву эти микросхемы…
Многие задавались вопросом по поводу возможности сделать «Стоп-габарит» на одном стабилизаторе c LM2596… это почти тоже самое, так что можете пробовать «такое» и со стабилизаторами на LM2596…
И еще не менее важное: можно реализовать вместо «Стоп-габарит» — «Американский габарит-поворот» на одноконтактной оранжевой лампе 21W ))))…
Правильного питания, минимальной температуры и «почти вечной» работы вашим светодиодам, стабилизаторам и драйверам!
Импульсный стабилизатор на микросхеме XL4015
Данный обзор посвящён модулю импульсного стабилизатора, который предлагается интернет-магазинами под названием «5A Lithium Charger CV CC Buck Step Down Power Module LED Driver». Таким образом модуль представляет собой импульсный понижающий преобразователь, предназначенный для зарядки литий-ионных аккумуляторов в режимах CV (постоянное напряжение) и СС (постоянный ток), а также для питания светодиодов. Стоит данное устройство около 2-х USD. Конструктивно модуль представляет собой печатную плату, на которой установлены все элементы, включая сигнальные светодиоды и органы регулировки. Внешний вид модуля представлен на рис.1.
Чертёж печатной платы представлен на рис. 2.
Согласно спецификации изготовителя модуль имеет следующие технические характеристики:
Сочетание невысокой цены, малых размеров и высоких технических характеристик вызвало у автора интерес и желание экспериментально определить основные характеристики модуля.
Производитель не приводит схему электрическую принципиальную, по этому её пришлось рисовать самостоятельно. Результат этой работы представлен на рис. 3.
Основой устройства является микросхема DA2 XL4015, представляющая собой оригинальную китайскую разработку. Данная микросхема весьма похожа на популярную LM2596, но отличается улучшенными характеристиками. Видимо это достигается применением в качестве силового ключа мощного полевого транзистора. Описание этой микросхемы приведено в Л1. В данном устройстве микросхема включена в полном соответствии с рекомендациями изготовителя. Переменный резистор “CV” является регулятором выходного напряжения. Цепь регулируемого ограничения выходного тока выполнена на операционном усилителе DA3.1. Этот усилитель сравнивает падение напряжения на токоизмерительном резисторе R9 с регулируемым напряжением, снимаемым с переменного резистора “CC”. С помощью этого резистора можно задать желаемый уровень ограничения тока в нагрузке стабилизатора.
Если заданное значение тока будет превышено, то на выходе усилителя появится сигнал высокого уровня, красный светодиод HL2 откроется и напряжение на входе 2 микросхемы DA2 повысится, что приведёт к снижению напряжения и тока на выходе стабилизатора. Кроме того свечение HL2 будет сигнализировать о том, что модуль работает в режиме стабилизации тока (СС). Конденсатор С5 должен обеспечивать устойчивость узла регулирования тока.
На втором операционном усилителе DA3.2 собран сигнализатор снижения тока в нагрузке до значения менее 9% от заданного максимального тока. Если ток превышает указанное значение, то светится синий светодиод HL3, в противном случае светится зелёный светодиод HL1. При зарядке литий-ионных аккумуляторов снижение зарядного тока является одним из признаков окончания зарядки.
На микросхеме DA1 собран стабилизатор с выходным напряжением 5В. Это напряжение используется для питания операционного усилителя DA3, также оно используется для формирования опорного напряжения ограничителя тока и сигнализатора снижения тока.
Падение напряжения на токоизмерительном резисторе никак не компенсируется, по этому с ростом тока в нагрузке выходное напряжение стабилизатора снижается. Чтобы уменьшить данный недостаток величина токоизмерительного резистора выбрана достаточно маленькой (0.05 Ома). Из-за этого дрейф операционного усилителя DA3 может вызвать заметную нестабильность как уровня ограничения выходного тока так и уровня срабатывания сигнализатора.
Испытания модуля показали, что выходное сопротивление стабилизатора в режиме стабилизации напряжения (CV) практически полностью определяется токоизмерительным резистором и составляет около 0.06 Ома.
Коэффициент стабилизации напряжения около 400.
Для оценки тепловыделения на вход модуля было подано напряжение 12В. На выходе было установлено напряжение 5В при нагрузке сопротивлением 2.5 Ома (ток 2А). Через 30 минут микросхема DA2, дроссель L1 и диод VD1 нагрелись до 71, 64 и 48 градусов Цельсия соответственно.
Работа в режиме стабилизации тока в нагрузке (СС) сопровождалась переходом микросхемы DA2 в режим формирования пачек импульсов. Частота следования и длительность пачек изменялись в широких пределах в зависимости от величины тока. Эффект стабилизации тока при этом имел место, но пульсации на выходе модуля существенно возрастали. Кроме того работа устройства в режиме СС сопровождалась довольно громким писком, источником которого являлся дроссель L1.
Работа сигнализатора снижения тока нареканий не вызвала. Модуль успешно выдерживал короткое замыкание в нагрузке.
Таким образом модуль работоспособен как в режиме CV, так и в режиме СС, но при его использовании следует учитывать вышеописанные особенности.
Данный обзор написан по результатам исследования одного экземпляра устройства, что делает полученные результаты чисто ориентировочными.
По мнению автора описанный импульсный стабилизатор может быть с успехом использован, если требуется дешёвый, компактный источник питания с удовлетворительными характеристиками.
Чипгуру
Тестирование китайских модулей
Тестирование китайских модулей
Сообщение #1 KimIV » 11 июл 2018, 08:20
Ни для кого ведь не секрет, что китайцы являются большими выдумщиками, когда дело касается характеристик того или иного товара. Ну очень они любят приукрасить и делают это виртуозно, на границе правды и лжи. Например, продаётся какой-нибудь DC-DC преобразователь, в характеристиках которого заявлено входное и выходное напряжения какие-то там цифры и ток 5 А. Вот это да! Думаем мы. За какие-то копейки ПЯТЬ АМПЕР. Берём. Ждём. Получаем. Проверяем. 1А боль-мень, а 2А уже как кипятильник. Без радиатора, которого, кстати, нет в комплекте или других способов отвода тепла, ни о каких 5А речи быть не может. И это только по току самый яркий пример. Есть ещё примеры менее показательные, когда в характеристиках модуля продавец указывает, что он может работать при минимальном напряжении 2 В. И ты так прикидываешь, что теперь запросто сможешь запитать свою поделку от двух аккумуляторов формата АА или ААА, последовательное соединение которых даёт 2,4 вольта. Модуль приходит, проверяем. Оказывается, он запускается только от 2,8 В и выше. Обломс! Время потрачено, деньги тоже!
Эту тему я создал для того, чтобы в ней делиться своими результатами тестов тех модулей, которые я заказывал сам и которые что называется прошли через мои руки. Весьма приветствуется, если кто-то ко мне присоединится и выложит свои наработки. Также приветствуются любые вопросы по тем китайским модулям, которые будут тестироваться в этой теме.
Тестирование китайских модулей
Сообщение #2 DOC » 11 июл 2018, 10:51
Тестирование китайских модулей
Сообщение #3 KimIV » 11 июл 2018, 11:31
XL4015E1 в режиме заряда Li-ion 8,4В 1А
То есть процесс заряда батареи из двух аккумуляторов должен начинаться примерно с 6 вольт и ток не должен превышать 1 А. А по мере приближения к номинальным 8,4 В ток должен снижаться до некоторого минимального значения, по достижении которого зарядное устройство просигнализирует об окончании зарядки. В качестве модуля, который вроде бы должен смочь обеспечить требуемый режим заряда, я выбрал модуль на основе микросхемы XL4015E1.
Даташит на эту микруху легко ищется в интернетах, но я всё-таки приведу скриншот основных характеристик из даташита.
В модуле уже изначально имеются:
— Возможность настройки и установки выходного напряжения в довольно широком интервале.
— Возможность ограничения тока, которое работает за счёт снижения выходного напряжения.
Подаю на вход 12 вольт. Сразу же вижу ток холостого хода 18 мА. А на модуле засветился светодиод, сигнализирующий об окончании процесса зарядки.
На выходе модуля появилось напряжение 4,6 В. С помощью потенциометра я довёл его до 8,4 В. Далее подключаю нагрузку. Ток, потребляемый преобразователем, при этом возрос до 36 мА.
Увеличиваю ток нагрузки до 1А. При этом напряжение на нагрузке просело до 8,3 В. А ток, потребляемый преобразователем, возрос до 0,8 А. Индикатор окончания заряда погас, а вместо него загорелся индикатор процесса заряда.
И так я всё оставил на полчаса, время от времени, контролируя нагрев платы тепловизором. Вот примеры нескольких термограмм с разницей во времени 20 минут.
По температуре модуль прошёл испытания. Есть большой запас для тяжёлых условий, например в жару и в закрытом корпусе. Проверяю ток отсечки для индикатора окончания заряда. Изменением тока нагрузки удалось словить момент, когда зажжены оба светодиода: и процесса заряда и окончания заряда. И это случилось на 20 мА. Но там грань очень тонкая. Чуть поворачиваешь, ток всё ещё 20 мА, а какой-нибудь светодиод уже погас.
Теперь проверяю режим ограничения тока. Нагрузкой совсем чуть-чуть поднял ток и напряжение сразу просело до 5 В. Если ещё увеличить нагрузку, то напряжение ещё сильнее проседает, вплоть до 1 В, а ток остаётся постоянным. Вообщем, по току ограничивает чётко. Ну и светодиод режима ограничения тока тоже бодро зажигается.
Таким образом, делаю вывод, что выбранный мной модуль вполне годен для использования в качестве зарядного устройства батареи из двух литий-ионных аккумуляторов напряжением 8,4 В и током 1 А. При этом модуль имеет довольно большой запас по температуре нагрева.
Тестирование китайских модулей
Сообщение #4 omich » 11 июл 2018, 13:39
Тестирование китайских модулей
Сообщение #5 KimIV » 11 июл 2018, 13:52
Ну я бы не был столь категоричен! Заглянем в даташит LM2596
Заявленные 3 ампера там присутствуют. Китайцы просто тупо их переписали. Пиковые, недолгие 3 А эта микросхема выдерживает легко. Так-что это не враньё, а просто другая правда!
Как выбрать DC-DC преобразователь
Иногда создается ощущение, что стабилизаторы напряжения везде, даже там, где казалось им делать нечего. Они встречаются в повербанках, смартфонах, телевизионных приставках, USB разветвителях, роутерах и многих других устройствах.
DC-DC конвертеры продаются в виде отельных модулей, предназначенных как для радиолюбительского творчества, так для профессионального применения. В данной статье мы расскажем об особенностях этих «невидимых помощников».
Время чтения: 18 минут |
Особенности и характеристики стабилизаторов напряжения
По списку вариантов исполнения (не считая комбинаций) существует много моделей конвертеров. А ведь бывают еще отличия, например, возможность подключения к компьютеру, сверхмалое потребление в дежурном режиме, повышенный диапазон входного напряжения, наличие синхронного выпрямителя для повышения КПД и т.д.
Следует помнить, что линейные стабилизаторы («КРЕНки») не являются конвертерами. Трансформаторы DC, например, при выходных 5 Вольт 3 Ампер и входном 15 Вольт, ток по входу будет пропорционально меньше, в отличие от линейных стабилизаторов, где ток одинаков всегда.
Понижающие модули питания постоянного тока
Топология Step-Down
Обычно понижающие конвертеры выполнены по топологии Step-Down, выходное напряжение всегда должно быть выше входного на 5-20%.
Схема топологии Step-Down
Примеры понижающих DC-DC преобразователей
Большое распространение получают компактные синхронные модули на базе MP2225, с заявленным максимальным выходным током до 5 Ампер, что при таком размере выглядит очень интересно.
DC-DC модуль питания DD4012SA «КРЕНки» позволяет заменить ей с увеличением КПД.
Синхронный преобразователь на базе MP2225 и DC-DC модуль питания DD4012SA
В радиолюбительской среде известны преобразователи на базе микросхем: LM2596S, XL4005, XL4015. Больше внимания заслуживают второй и третий вариант.
Преобразователи DC-DC имеют выходной ток до 3 или 5 Ампер, регулировку и диапазон входного напряжения от 4-5 до 30-40 Вольт. Отличием являются неплохие нагрузочные характеристики при не высокой цене.
Преобразователи на базе микросхем: LM2596S, XL4005, XL4015
На подобных платах встречаются два или три подстроечных резистора. Второй предназначен для регулировки ограничения тока, а если есть третий, то при помощи него настраивается порог индикации ограничения тока. Подобные платы используются там, где необходимо ограничение тока, например, питание мощных светодиодных матриц, заряд аккумуляторов. Иногда на такие платы ставят индикатор для отображения значений, что повышает удобство пользования, превращая его в универсальное зарядное устройство.
Платы с индикатором отображения тока и напряжения
Выпускаются более мощные версии, например, на базе популярного контроллера XL4016. Для них обычно заявляется ток нагрузки до 8-12 Ампер. Причем иногда к подобным платам добавляют ампервольтметр и получают простенький лабораторный блок питания.
Если этого мало, то, например, на рисунке ниже показан стабилизатор с ограничением тока, входным напряжением 20-70 Вольт и выходным током до 30 Ампер при 2.5-58 Вольт. Его используют для питания автомобильного холодильника от 24 Вольт аккумулятора.
Стабилизатор напряжения с ограничением тока
Ниже сравним несколько понижающих преобразователей.
Повышающие модули питания DC-DC
Не менее интересный и полезный сегмент устройств, хотя не такой распространенный.
Топология Step-Up
Необходимо пояснить одну особенность большинства модулей по топологии Step-Up, которая поможет не сжечь ваше устройство или стабилизатор. Преобразователи, собранные по такой топологии, не могут выдавать на выход напряжение меньше, чем входное минус падение на диоде. Если на входе у него 20 Вольт, то на выходе никак не получится менее 19.5, это важно и следует учитывать.
Если у повышающего конвертера указан максимальный выходной ток – это значение при минимальном соотношении вход/выход, а ориентироваться правильнее на максимальный входной ток и считать мощность инвертора.
Учет указанных выше особенностей позволит избежать ошибок и использовать эффективнее повышающие модули DC-DC.
Схема топологии Step-Up
Примеры повышающих DC-DC преобразователей
Выделяют пару недорогих «народных» моделей, которые перекрывают большую часть потребностей радиолюбителей.
Две первые модели построены на базе контроллеров SX1308, MT3608. Начинают они работать при напряжении в 1.8-2 Вольт, это критично для устройств с аккумуляторным питанием.
В третьем модуле применена XL6009, минимальное входное напряжение составляет 5 Вольт, выходная мощность немного выше, чем у предыдущих, но в целом они похожи, поэтому SX1308, MT3608 более интересны за счет меньшего размера.
Модули питания, построенные на базе контроллеров SX1308, MT3608 и XL6009
Использовать подобные конвертеры удобно для питания маломощных потребителей, например, светодиодной подсветки на базе 12 вольт лент от одного-двух литий-ионных аккумуляторов.
Более мощные DC-DC преобразователи на базе XL6019 имеют минимальное входное напряжение в 5 Вольт и допускают ток встроенного ключа в 5 Ампер, что в два раза больше, чем у предыдущих.
Питание более мощной нагрузки, например, ноутбука от автомобильного аккумулятора, подойдет преобразователь QSKJ QS-1224CBD с током от 10 Ампер и мощностью до 150 Ватт.
Преобразователи на базе XL6019
Модули питания DC-DC с функцией ограничения тока
Часто необходимо иметь не только относительно большую выходную мощность, а и функцию ограничения тока. Это сильно расширяет сферу применения, позволяя заряжать аккумуляторы электровелосипедов, питать мощные светодиодные прожекторы. С повышающим стабилизатором используется все, что есть «под рукой», например, недорогие блоки питания 12 Вольт или автомобильный аккумулятор.
Но следует учитывать, что защиту от короткого замыкания такие преобразователи не имеют, ток ограничивают ровно до тех пор, пока напряжение на нагрузке не станет ниже чем напряжение источника.
Первый стабилизатор имеет мощность до 400 Ватт при максимальном токе до 12 Ампер.
QSKJ QS-2448CCBD более компактен с мощностью до 100 Ватт, все компоненты смонтированы на алюминиевой подложке, которую можно установить на радиатор для лучшего охлаждения.
Повышающий преобразователь BMM9201 кроме ограничения тока имеет еще дисплей, на который можно вывести информацию о токе или напряжении, как входном, так выходном, при помощи джампера.
Примеры повышающих преобразователей QS-2448CCBD и BMM9201
В случае если этого мало, можно использовать конвертер QSKJ QS-4884CCCV, он также имеет функцию ограничения выходного тока, но выпускается в двух вариантах, 1200 и 1800 Ватт. Причем разница в цене между ними минимальна, а ключевые отличия 1800 Ватт модели заключаются в более мощном дросселе и трех предохранителях против двух у младшей.
Обе модели имеют массивный радиатор и активное охлаждение.
Максимальный входной ток первой модели составляет 20 Ампер, а второй 25-30 Ампер, поэтому при питании от источника 12 Вольт получится только 240 или 360 Ватт.
Так как у повышающих преобразователей ток по входу выше, чем по выходу пропорционально коэффициенту преобразования, следует убедится, что сможет ли ваш источник обеспечить такой ток. Это касается всех повышающих стабилизаторов. Как пример, максимальный входной ток 10 Ампер, на выходе хотим получить 36 Вольт 5 Ампер, значит напряжение источника должно быть не менее (36х5)/10=18 Вольт без учета КПД, а так как КПД обычно около 90%, то получается надо минимум 20 Вольт, а лучше 24.
DC-DC конвертер QSKJ QS-4884CCCV
Ниже сравним несколько повышающих преобразователей.
DC-DC повышающе-понижающие преобразователи
Особая серия конвертеров с возможностью работать как на повышение, так и на понижение напряжения. Применяются подобные преобразователи не так часто, как повышающие или понижающие, но иногда бывают ситуации, что без них никак. Пример применения — питание устройств которым надо 12 Вольт в автомобиле, где напряжение в зависимости от ситуации может меняться от 10 до 15 Вольт.
Топология Step-Up и Step-Down
Под таким названием продаются разные варианты, но правильным является тот, где на плате стоит два независимых преобразователя. При помощи первого входное напряжение повышается до некоего фиксированного, а затем при помощи второго понижается до требуемого.
Схема топологии Step-Up и Step-Down
Из-за перечисленных особенностей встречаются редко. Например, небольшая плата, с относительными характеристиками и неплохой регулируемый инвертор DPS5005, который отличается хорошими характеристиками, довольно высоким КПД.
Преобразователь напряжения DPS5005
Топология SEPIC
Достаточно старая топология, но очень интересная так как из активных компонентов требуется только один ШИМ контроллер, один силовой транзистор и диод. Отличается двумя одинаковыми дросселями, хотя встречаются с одним двухобмоточным.
Преимущества — простая схемотехника, не высокая цена, высокий КПД, чем у повышающе-понижающего, но высокий уровень пульсаций.
Как и предыдущая топология использует регулировку не только выходного напряжения, но и тока, а также функцию полного отключения выхода.
Схема топологии SEPIC
Выбор модулей подобного типа большой, сложности с выбором подходящего нет.
SEPIC на базе очень известной XL6019, вход 5-32 Вольт, выход 1.25-35 Вольт, ток нагрузки до 1.5 Ампер, имеет дополнительный фильтр для снижения пульсаций по выходу.
Более продвинутый DC-DC преобразователь ZK-SJVA-4X, у него есть не только регулировка напряжения и тока, а и индикатор, диапазон входных напряжений 5.5-30 Вольт, выход 0.5-30 при токе до 4 Ампер.
Третий преобразователь хоть и не имеет регулировки выходного тока, но имеет защиту от перегрева и мощность до 80 Ватт, а также индикатор напряжения, что также может быть удобно.
Примеры DC-DC конвертеров топологии SEPIC
Топология на базе контроллера LTC3780
Данный инвертор является гибридным, содержит один ШИМ контроллер, один дроссель. Два силовых узла с синхронным выпрямлением, которые работают в зависимости от соотношения входного и выходного напряжения.
Схема топологии на базе контроллера LTC3780
Выбор моделей небольшой, различия минимальны, хотя существует сдвоенная версия, состоящая из двух модулей на одной плате, но встречается крайне редко.
Выбор моделей небольшой, различия минимальны, хотя существует сдвоенная версия, состоящая из двух модулей на одной плате, но встречается крайне редко.
Преобразователь на базе LTC3780 работает от 5-30 вольт, обеспечивая на выходе напряжение 0.5-30 вольт при токе до 8-10 ампер и мощности до 80-130 Вт.
Преобразователь на базе LTC3780 работает от 5-30 Вольт, обеспечивая на выходе напряжение 0.5-30 Вольт при токе до 8-10 Ампер и мощности до 80-130 Ватт.
Стабилизатор отлично подходит для заряда аккумуляторов, построения источников бесперебойного питания со стабилизированным выходом и вообще питания требовательных нагрузок.
Ниже сравним несколько повышающе-понижающих преобразователей.
Дополнительные особенности преобразователей
В некоторых случаях стабилизаторы могут иметь дополнительный функционал или особенности, выделяющие их на фоне других, поэтому стоит их выделить в отдельную группу.
Существуют преобразователи с USB выходом для заряда или питания различных планшетов, смартфонов, получающих питание от USB.
Есть очень простые, особенность которых заключается только в низкой цене и возможности получить 5 Вольт от одного Li-Ion аккумулятора.
Бывают многоканальные понижающие, как QSKJ QS-1205CBUM. Но его особенность не в количестве каналов, а в наличии весьма современного ШИМ контроллера с синхронным выпрямлением и внешними силовыми транзисторами, что позволило получить выходной ток до 8 Ампер с высоким КПД. Также у него есть защита от неправильной полярности питания, «обманки» на каждом порту для корректного определения различными моделями смартфонов.
DC-DC преобразователи с USB выходом
Модули питания DC-DC фирмы YZXStudio
Отдельно стоят в списке USB зарядных устройств модулей фирмы YZXStudio, помимо правильной схемотехники, качественных комплектующих и четкой работы они поддерживают большое количество протоколов быстрого заряда.
ZC822 — младшая модель, поддерживает QC/PD и выходную мощность до 27 Ватт.
ZC823 — поддерживает только QC/PD, возможность обеспечить 60 Вольт при выходном напряжении 20 Вольт.
ZC826P — редкий преобразователь, помимо функций быстрого заряда он является обратимым. Если его вход подключен к аккумулятору, а к USB Type-C выходу подключить не нагрузку, а блок питания, то конвертер начнет работать в обратную сторону и будет заряжать аккумулятор. Фактически имея такой преобразователь и аккумулятор можно самому сделать повербанк с мощным выходом, поддержкой большого количества протоколов. При этом обратимый преобразователь может выдавать от 5 до 20 Вольт при питании от 12 Вольт.
DC-DC модули питания ZC822, ZC823, ZC826 фирмы YZXStudio
Также фирма YZXStudio предлагает для своих устройств кросс-платы, установив в которые показанные модули можно сделать многоканальное зарядное устройство. Именно потому все модули имеют одинаковый размер и расположение разъемов.
Модули питания DC-DC фирмы muRata
В продаже существует много понижающих конвертеров собранных по топологии Step-Down. Но низкая надежность, отсутствие гальванической развязки может печально закончится для подключаемых устройств, его элементарно может пробить накоротко, а на нагрузке вы получите полное напряжение батареи.
Именно для таких применений рекомендуют фирменные модули производства muRata. Данные модули использовались для телекоммуникационного оборудования, но сейчас они встречаются и просто в продаже, причем за небольшую цену. Ключевое — качество конвертера, гальваническая развязка. Недостатки — фиксированное выходное напряжение, хотя и его при желании можно подстроить.
Из наиболее интересных — muRata HPH-12/30-D48NHL2-Y который при входном 36-75 Вольт выдает на выход 12 Вольт с током до 30 Ампер или 360 Ватт.
DC-DC преобразователь muRata HPH-12/30-D48NHL2-Y
Модули питания DC-DC фирмы RCNUN
Также выпускаются преобразователи для тяжелых условий эксплуатации, например, в автомобилях, катерах. Обычно такие модули имеют герметичное исполнение, корпус в виде радиатора при большой выходной мощности, дополнительные цепи защиты.
Например, большой ассортимент подобных преобразователей выпускает фирма RCNUN. Они бывают понижающие, повышающие, универсальные, регулируемые, с фиксированным напряжением, просто с проводами, с клеммниками и USB разъемами.
DC-DC преобразователи напряжения RC120503, RC8-40S1210, RC12240540 фирмы RCNUN
Как можно наблюдать из статьи, выбор топологий, моделей и вариантов исполнения DC-DC преобразователей действительно огромен, а ведь показана лишь меньшая часть из того, что сейчас выпускается.
Теперь главная задача, подобрать то, что необходимо для определенного применения. Надеемся, что данная статья сможет вам в этом помочь.