акриловый полимер что это такое
Акриловые полимеры (акрилаты)
Акриловые полимеры, или так называемые акрилаты, представляют собой полимеры и сополимеры эфиров, амидов и нитрилов простейших непредельных карбоновых кислот: акриловой (СН2= = СН—СООН) и метакриловой (СН2 = С(СН3)—СООН).
Наибольшее применение в производстве пластмасс и покрытий получили метиловый, этиловый и бутиловый эфиры акриловой и метиловый и бутиловый эфиры метакриловой кислот. Эфиры этих кислот легко полимеризуются, образуя прозрачные, бесцветные и термопластичные полимеры следующего строения:
Полиакрилаты и полиметилакрилаты широко используют для производства листовых материалов, труб, композиций для прессования и литья под давлением, пропиточных составов и т. д., поли-метилметакрилат, или органическое стекло (плексиглас),— в авиастроении и приборостроении.
Акрилаты растворяются преимущественно в сложных эфирах, кетонах, хлорированных и ароматических углеводородах и совмещаются с пластификаторами. Самостоятельно или в смеси с другими пленкообразователями (нитратом целлюлозы, ацетилцеллюлозой, некоторыми смолами и др.) их применяют для изготовления специальных особо светлых лаков и ярких эмалей. Покрытия их отличаются высокой атмосферостойкостью, стойкостью к действию ультрафиолетового излучения.
Как и другие термопластичные полимеры, акрилаты образуют высоковязкие растворы; приготовленные на них лаки и краски имеют невысокий сухой остаток. Для отделки древесины их применяют ограниченно.
Водные дисперсии акриловых полимеров и сополимеров, образуемые при эмульсионной полимеризации, применяют для приготовления воднодисперсионных красок, причем атмосферостойкость покрытий из них значительно превосходит атмосферостойкость покрытий из других дисперсий, например поливинилацетата.
Недостаток акрилатов как пленкообразователя — относительно высокая стоимость и невысокий сухой остаток.
Полиметилметакрилат и другие полиакрилаты: производство и свойства
Полиметилметакрилат (ПММА) – это полимер метилметакрилата (метилового эфира метакриловой кислоты), имеющий формулу [-СН2С(СН3)(СООСН3)-]n.
Производство блочного полиметилметакрилата (органического стекла)
Полиметилметакрилат (пластифицированный или непластифицированный) получают блочной полимеризацией метилметакрилата в формах из силикатного стекла в присутствии инициаторов. При полимеризации в формах для уменьшения количества выделяющегося тепла и усадки в формы заливают 10—30%-ный раствор полиметилметакрилата в мономере (сироп). При получении пластифицированного полиметилметакрилата в качестве пластификатора применяют фталаты (дибутилфталат), фосфаты и другие соединения (5—15% от массы мономера).
Технологический процесс получения листового органического стекла является периодическим и состоит из стадий изготовления стеклянных форм, приготовления мономера или сиропа и заливки его в формы, полимеризации (мономера или сиропа) в формах, охлаждения, разъема форм, обработки и упаковки.
Формы изготовляют из силикатного стекла размером 1200×1400, 1450×1600 и 1600×1800 мм и толщиной 5—11 мм. Силикатное стекло предварительно промывают и сушат в специальном агрегате. Листы силикатного стекла по краям разделяют трубкой из пластифицированного поливинилхлорида или укладывают между ними резиновый шланг, обернутый бумагой, прочитанной водным раствором поливинилового спирта. Расстояние между силикатными стеклами определяет толщину листов органического стекла.
Мономер готовят при комнатной температуре в аппарате с мешалкой. В аппарат загружают метилметакрилат и инициатор— пероксид бензоила (0,1—1,0% от массы мономера).Смесь тщательно перемешивают. Приготовленный мономер поступает в специальный аппарат-мерник, из которого затем подается в формы.
Полимеризацию мономера в формах проводят в туннельной полимеризационной камере с циркулирующим горячим воздухом или в ваннах с циркулирующей водой, нагретой до 20 °С.
При использовании сиропа процесс полимеризации состоит из двух стадий:
Применение сиропа обеспечивает более высокую степень полимеризации (уменьшается обрыв цепи, повышается молекулярная масса полимера), кроме того при его использовании уменьшается образование вздутий и пузырей, что способствует улучшению качества органического стекла. Сироп получают форполимеризацией мономера в аппарате с мешалкой, обратным холодильником, системой обогрева и охлаждения в присутствии незначительных количеств инициатора (0,05—0,1%) при 70— 80 °С в течение 2 ч при слабом перемешивании. В результате полимеризации образуется раствор полимера в мономере, содержащий 5—10% полимера. После охлаждения в полученный сироп вводят инициатор и тщательно перемешивают. Затем сироп заливают в формы для окончательной полимеризации.
Сироп можно готовить также, растворяя полиметилметакрилат в виде «крупки» (отходы органического стекла) в мономере.
В аппарат-смеситель 1 загружают ММА, «крупку» ПММА, инициатор, пластификатор и краситель (при получении окрашенного стекла).
«Крупку» получают путем измельчения обрезков или бракованных листов органического стекла на станке, просеивая их через сито, и термообработки в течение 1—8 ч при 40—150 °С до образования продукта необходимой молекулярной массы.
Ниже приведены нормы загрузки компонентов в аппарат-смеситель, (в массовых частях):
Для получения матовых стекол с перламутровым оттенком вводят 6— 9 массовых частей полистирола.
В аппарате 1 при перемешивании сначала растворяют «крупку» в ММА при 45 °С в течение 2—3 ч, затем вводят пластификатор, инициатор и другие компоненты. Полученный сироп перемешивают и сливают в вакуумизатор 2 для извлечения из реакционной массы растворенного воздуха. После этого сироп заливают в формы 3 , которые помещают в шкафы полимеризации 4 . В шкафы подается, горячий воздух, нагреваемый в калориферах. Температуру полимеризации изменяют в зависимости от толщины получаемого листа, постепенно повышая ее от 40 до 100 °С.
Продолжительность полимеризации определяется толщиной стекла и колеблется от 20 до 100 ч. Окончание процесса полимеризации проверяют в формах по содержанию остаточного мономера.
По окончании полимеризации формы охлаждают, разнимают и извлекают полимер в виде листов или блоков. Разъем форм можно проводить как мокрым, так и сухим методом. При мокром методе формы погружают в ванны, заполненные горячей водой. При сухом разъеме охлаждение форм до комнатной температуры проводится в термокамере воздухом. Полученные листы органического стекла поступают на обработку и контроль, затем их оклеивают бумагой, обрезают края листов по формату и упаковывают. Силикатные стекла поступают на мойку для повторного использования.
В качестве инициаторов реакции полимеризации метилметакрилата применяют также перкарбонаты. При получении толстых листов органического стекла и крупных блоков используют различные окислительно-восстановительные системы, которые позволяют проводить полимеризацию метилметакрилата при более низких температурах.
Производство суспензионных полиакрилатов и полиметакрилатов
Суспензионную полимеризацию эфиров акриловой и метакриловой кислот проводят в водной среде в присутствии инициаторов, растворимых в мономере. Этот метод применяется для полимеризации эфиров низших спиртов (метилового и этилового) метакриловой кислоты и эфиров акриловой кислоты. В качестве инициаторов используют пероксиды и азосоединения, чаще всего— пероксид бензоила. Стабилизаторами суспензии служат желатин и поливиниловый спирт, метилцеллюлоза, соли полиакриловой и полиметакриловой кислот и др. Полимеры образуются в виде гранул. Размер образующихся гранул зависит от содержания и природы стабилизатора, а также от скорости перевешивания реакционной среды.
В реактор загружают дистиллированную воду и мономер (отношение 3:1), затем вводят стабилизатор суспензии (около 3% от массы мономера). После перемешивания в реактор вводят пластификатор — дибутил-, диоктилфталаты, дибутилсебадинат и др. (от 5 до 30% от массы мономера) и если нужно, краситель. Затем добавляют раствор инициатора (0,2—0,5%) в мономере.
Полимеризацию проводят сначала при 70—75 °С, а затем температура повышается до 80—85 °С за счет теплоты, выделяющейся в результате реакции. Продолжительность процесса – около 4 ч.
Полимеризацию в суспензии можно проводить и при более высокой температуре под давлением. Например, гранульный полиметилметакрилат, пригодный для изготовления изделий прессованием, получают в автоклаве при 120—134°С. В реакционную смесь вводят различные добавки: смазочные вещества (стеариновая кислота или лауриловый спирт), термостабилизаторы (диоктилсульфид), регуляторы молекулярной массы полимера и др.
Окончание полимеризации определяют по содержанию мономера в полимере, которое не должно превышать 1— 2%. Гранулы полимера поступают на центрифугу или нутчфильтр, где их отделяют от жидкой фазы и промывают водой или разбавленным раствором серной кислоты (которую затем отмывают водой) для удаления остатков стабилизатора суспензии. Далее полимер сушат в гребковой вакуум-сушилке или в сушилке с встречным потоком воздуха при температуре около 100 °С. Сухие гранулы полимера направляют на упаковку или дальнейшую переработку.
Полученные, гранулы перерабатывают в изделия литьем под давлением (при 190—280°С) и экструзией. Полимер с частицами размером не более 0,2 мм можно перерабатывать в изделия методом прессования при 140—180 °С и давлении 9,8—14,7 МПа.
Для литья обычно применяют полиметилметакрилат со средней молекулярной массой 20000—30000, который получают в присутствии пероксида бензоила и карбоната магния в автоклаве при 80—120 °С.
Производство эмульсионных полиакрилатов и полиметакрилатов
Эмульсионную (латексную) полимеризацию эфиров акриловой и метакриловой кислот проводят в водной среде в присутствии инициаторов, растворимых в воде, но нерастворимых в мономере. Реакция протекает с высокой скоростью, образующийся полимер имеет молекулярную массу большую, чем при полимеризации в блоке, суспензии и в растворе.
Полимер образуется в виде латекса, из которого можно выделять твердый продукт в виде тонкодиоперсного порошка.
При эмульсионной полимеризации в качестве эмульгаторов применяют различные мыла (олеиновые), соли органических сульфокислот, сульфированные масла и т. п., а также различные поверхностно-активные вещества неионогенного типа. Инициаторами служат персульфат аммония, пероксид водорода и другие пероксиды, растворимые в воде.
Полимеризацию проводят в нейтральной или слегка кислой среде. Соотношение мономера, воды, эмульгатора и инициатора такое же, как и при полимеризации в суспензии. Реакцию проводят в условиях, аналогичных условиям полимеризации в суспензии при 60—90 °С. Контроль процесса осуществляют по содержанию мономера в полимере, которое по завершении реакции не должно превышать 1—2%. Порошок полимера выделяют из эмульсии путем разрушения ее серной кислотой или испарения воды. Полученный тонкодисперсный порошок фильтруют на центрифуге, отмывают от эмульгатора водой или спиртом, сушат при 40—70 °С и направляют на дальнейшую переработку.
Метод эмульсионной полимеризации широко применяется для получения полиметилакрилата, полибутилметакрилата и других полиакрилатов.
Производство полиакрилатов и полиметакрилатов в растворе
Полимеризацию эфиров акриловой и метакриловой кислот в растворе проводят только в тех случаях, когда полимеры используют для приготовления лаков.
В качестве растворителей применяют бензол, изопропилбензол, хлорбензол, толуол, ацетон, циклогексанон и др.
Инициаторами служат пероксид бензоила, динитрил азобисизомасляной кислоты и другие инициаторы радикального типа. При полимеризации в растворе образуются полимеры с низкой молекулярной массой вследствие передачи цепи на растворитель.
В промышленности полимеризацию метилметакрилата обычно проводят в водно-метанольной среде (30 :70), в которой растворяется мономер, но не растворяется полимер.
Полиметилметакрилат образуется в виде порошка, выпадающего в осадок. Полимер отфильтровывают на центрифуге, а водно-метанольную смесь возвращают в процесс.
Свойства полимеров эфиров акриловой и метакриловой кислот
Полимеры эфиров акриловой и метакриловой кислот представляют собой термопластичные, аморфные материалы, прозрачные и бесцветные. В зависимости от строения при комнатной температуре они могут быть твердыми, эластичными или мягкими. Полиалкилметакрилаты характеризуются большей твердостью, чем полиалкилакрилаты.
Физико-механические свойства полиалкилакрилатов и полиалкилметакрилатов зависят от размера спиртового радикала в сложноэфирной группе. С увеличением длины радикала твердость, плотность и другие механические свойства полимера ухудшаются, снижается температура размягчения полимера.
Полиалкилакрилаты с большим спиртовым радикалом являются вязкими жидкостями.
Полиметилметакрилат — твердый полимер с молекулярной массой от 20 000 до 200 000 (в зависимости от метода получения и условий полимеризации).
Блочный полиметилметакрилат (органическое стекло) обладает высокой механической прочностью, легкостью и светопрозрачностью.
Стереорегулярный изотактический полиметилметакрилат, полученный при низких температурах, имеет температуру стеклования 45 °С и температуру плавления 160 °С, синдиотактический полимер — температуру стеклования 115°С и температуру плавления 200 °С.
Под действием внешних сил, главным образом растягивающих напряжений, в органическом стекле часто появляются трещины, которые в ряде случаев образуют полости с полным внутренним отражением. Это явление, получившее название «серебрение», значительно снижает качество органического стекла, ухудшает его свойства. Повышению стойкости органического стекла к растрескиванию способствуют пластификация и ориентация полимера, нагретого до 140—150 °С, растяжением в двух взаимно перпендикулярных направлениях. Это приводит также к увеличению ударной вязкости в 7—10 раз.
При нагревании полимеров эфиров акриловой и метакриловой кислот до 160 °С происходит их плавление, а выше этой температуры начинается деструкция. Так, полиметилакрилат деструктируется при 250 °С с образованием низкомолекулярных полимеров, диоксида углерода и метанола, а полиметилметакрилат — при 300 °С с образованием исходного мономера (80%).
При нагревании выше 250 °С происходит деструкция полибутилметакрилата с образованием изобутилена и смеси различных продуктов.
Полимеры эфиров акриловой и метакриловой кислот растворяются в сложных эфирах, кетонах, в хлорированных и ароматических углеводородах, плохо растворяются в алифатических углеводородах и низших спиртах. Растворимость в малополярных соединениях улучшается с увеличением длины алифатического радикала в сложноэфирной группе. С возрастанием молекулярной массы полимера растворимость ухудшается. При комнатной температуре они стойки к действию многих веществ. Действие излучений на полиалкилакрилаты приводит к частичной деструкции и сшиванию полимеров.
Полиалкилакрилаты и полиалкилметакрилаты способны окрашиваться в различные цвета при добавлении к ним соответствующих красителей и пигментов.
Наибольшее распространение получил полиметилметакрилат, который применяется главным образом для изготовления органического стекла.
В зависимости от физико-механических свойств, состояния поверхности и размера оптических искажений органическое стекло вырабатывается различных сортов и марок.
Полиметилметакрилат можно применять в электротехнике в конструкциях сухих высоковольтных разрядников.
В химической промышленности нашел применение материал на основе полиметилметакрилата с наполнителем — графитом. Он используется для изготовления электродов хлорных ванн, химической теплообменной аппаратуры и т.д.
Из полибутилметакрилата получают также гибкие шланги и оболочки для кабеля, имеющие высокую маслостойкость, стойкость к действию озона и атмосферных факторов.
Для модификации полимеров эфиров акриловой и метакриловой кислот широко используют метод сополимеризации.
В промышленности выпускается сополимер бутилметакрилата с метакриловой кислотой (БМК-5), который характеризуется хорошей адгезией к металлам и высокой светостойкостью. Широко,используются сополимеры метилметакрилата со стиролом.
Широкое распространение получили компаунды, применяемые в качестве диэлектриков для защиты обмоток водопогружных двигателей, в конструкциях измерительных трасформаторов и как влагонепроницаемые материалы для различных технических целей.
Освоено производство сополимеров эфиров акриловой и метакриловой кислот с винилхлоридом, винилиденхлоридом, винилацетатом, с простыми виниловыми эфирами и другими мономерами.
1.3. Полиакрилаты, акриловые и стиролакриловые сополимеры
Полимерные акриловые дисперсии делятся на акриловые и стирола-криловые. Акриловые — дисперсии полимеров, полученных из акриловых или метакриловых мономеров, стиролакриловые — при сополимеризации производных акриловой (метакриловой) кислоты со стиролом. В табл. 3 приведены характеристики мономеров, используемых для получения дисперсий обоих типов [13]. Так как акриловую кислоту и ее производные получают из пропана, метакриловую и ее эфиры — из 2-гидрокси-2-метилпропилонитрила, изобутана или изо-бутиральдегида в результате многостадийных процессов, эти мономеры более дороги, чем стирол и винилацетат. Поэтому акриловые сополимеры дороже стиролакриловых и сополимеров ви-нилацетата.
В то же время поли(мет)акрилаты обладают высокой атмосферо-стойкостью, стойкостью к действию УФ-излучения, хорошей водостойкостью и устойчивостью к пожелтению покрытий на их основе, возможностью легко получать сополимеры с заданной жесткостью, гибкостью и твердостью. Высокий блеск покрытий и его сохранение при длительном атмосферном воздействии в сочетании со стойкостью покрытий к действию щелочей, кислот и воды делает этот класс сополимеров незаменимым в рецептурах ЛКМ для наружного применения.
Структура и свойства акриловых сополимеров
Основные свойства полимеров, такие, как температура стеклования (Тст), минимальная температура пленкообразования (МТП) и физико-механические свойства покрытий на их основе, зависят от структуры основной и боковых цепей полимерной макромолекулы.
Новые акриловые сополимеры для производства ЛКМ
Акриловые полимеры используют в различных отраслях промышленности, в частности в качестве пленкообразователей и загустителей при производстве лакокрасочной продукции. С момента их появления на лакокрасочном рынке состав и технологии синтеза акриловых полимеров постоянно совершенствуются в соответствии с современными требованиями и в настоящее время заменяют другие пленкообразователи, традиционно применяемые для производства ЛКМ. Акриловые сополимеры различного состава используют для получения экологически безопасных материалов.
Одной из крупнейших областей применения акриловых сополимеров, полученных полимеризацией в растворе, является производство органорастворимых ЛКМ. Кроме того, такие продукты используют для получения вторичных водоразбавляемых акриловых дисперсий и порошковых ЛКМ.
Когда органорастворимые термопластичные акриловые сополимеры начали применять для производства ЛКМ, на их основе получали материалы, высыхающие за счет физических процессов (испарения растворителей). Сейчас такие продукты применяют только в отдельных случаях. В настоящее время для получения высококачественных ЛКМ, как правило, используют органорастворимые сополимеры, образующее трехмерную структуру в процессе пленкообразования. При отверждении протекают главным образом реакция самосшивания метилолакриламидов и взаимодействие гидроксильных групп акрилового сополимера с аминными смолами или полиизоцианатами, содержащими свободные или блокированные изоцианатные группы.
Одним из основных путей снижения выделения летучих органических соединений (ЛОС) при нанесении ЛКМ является использование воды в качестве растворителя или диспергирующего агента. Существует лишь незначительное число пленкообразователей, растворимых в воде. Тем не менее, с помощью специальных преобразований практически все олигомеры можно перевести в водную фазу. Путем перевода акриловых полимеров в водную фазу получают вторичные акриловые дисперсии, называемые так потому, что их получение происходит в две стадии: полимеризации и получения водной дисперсии. Акриловые полимеры для вторичных дисперсий получают блочной, суспензионной полимеризацией или, чаще всего, полимеризацией в растворе.
Существуют два способа получения стабильных вторичных дисперсий:
Акриловые смолы, полученные полимеризацией в растворе и используемые для производства вторичных дисперсий, имеют значительно более низкую молекулярную массу, чем смолы, полученные эмульсионной полимеризацией. Это является преимуществом при пленкообразовании за счет химического взаимодействия.
Вторичные водные дисперсии акриловых смол образуют ровную однородную блестящую пленку. Они устойчивы при хранении и механических воздействиях, образуют химически и атмосферостойкие покрытия.
В результате отгонки растворителей из растворов акриловых смол получают твердые смолы, применяемые в производстве порошковых ЛКМ, полностью удовлетворяющих требованиям по ограничению выделения ЛОС при производстве и нанесении.
Наиболее важным для применения в лакокрасочной промышленности типом акриловых полимеров являются первичные дисперсии. Первичные дисперсии акриловых сополимеров получают методом эмульсионной полимеризации. Процесс получения достаточно прост и относительно недорог.
Наиболее широко в лакокрасочной отрасли используют акриловые сополимеры (чистые акрилаты) и сополимеры эфиров (мет)акриловой кислоты со стиролом (стиролакрилаты).
Первичные дисперсии сополимеров являются термодинамически неустойчивыми системами. Они достигают кинетической стабильности при введении защитных коллоидных систем или водорастворимых мономеров, таких как (мет)акриловая кислота, акриламид или метакриламид.
Акриловые сополимеры используют для получения акрилэфирных преполимеров или олигомеров. Они, как правило, более высокомолекулярные и имеют более широкое молекулярно-массовое распределение, чем стехиометрические акрилаты и не могут быть описаны с помощью простой структурной формулы, а также их нельзя отнести к определенному типу смол по химической структуре основной полимерной цепи. Применяются четыре основных типа стандартных акриловых сополимеров с функциональными группами: эпоксиакрилаты, простые и сложные полиэфиракрилаты, полиуретанакрилаты.
Разработан ряд ненасыщенных соединений, которые применяют в составе радиационно-отверждаемых ЛКМ. Для этих целей предпочтительно используют акриловые мономеры.
Раньше для получения УФ–отверждаемых смол использовали ненасыщенные полиэфиры в сочетании со стиролом в качестве активного разбавителя. И хотя многие характеристики покрытий проще обеспечить в случае использования других пленкообразователей, ненасыщенные полиэфиры в течение длительного времени занимали большую долю рынка благодаря низкой стоимости. Замена нежелательного стирола акрилатами приводит к значительному удорожанию продукта.
Применяется ряд мономеров и смол, содержащих виниловые функциональные группы, например сложные и простые виниловые эфиры, N–виниламиды и винилстирол, винилтолуол.
Из сложных виниловых эфиров наиболее часто использовали винилацетат, но из-за низкой температуры кипения и вспышки его больше не используют в производстве радиационно-отверждаемых ЛКМ. Разработаны новые сложные виниловые эфиры, но из-за низкой реакционной способности и ограниченной доступности сырья они не используются широко в производстве радиационно-отверждаемых ЛКМ.
N–винилпирролидон в течение многих лет был одним из наиболее часто используемых активных разбавителей, но из-за его токсичности, запаха и высокой стоимости его использование в настоящее время существенно сократилось. Теперь N–винилпирролидон заменяют N–винилкапролактамом.
Возможность применения различных акриловых мономеров для синтеза сополимеров создает основу для разработки ЛКМ с разнообразными свойствами. Введение в молекулу полимера мономеров с разными физическими и химическими свойствами в различных пропорциях позволяет создавать сополимеры, отличающиеся молекулярной массой и структурой.