Что такое линейная функция 7 класс определение
График линейной функции, его свойства и формулы
Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).
Понятие функции
Функция — это зависимость «y» от «x», где «x» является переменной или аргументом функции, а «y» — зависимой переменной или значением функции.
Задать функцию значит определить правило, в соответствии с которым по значениям независимой переменной можно найти соответствующие ее значения. Вот, какими способами ее можно задать:
График функции — это объединение всех точек, когда вместо «x» можно подставить произвольные значения и найти координаты этих точек.
Понятие линейной функции
Линейная функция — это функция вида y = kx + b, где х — независимая переменная, k, b — некоторые числа. При этом k — угловой коэффициент, b — свободный коэффициент.
Геометрический смысл коэффициента b — длина отрезка, который отсекает прямая по оси OY, считая от начала координат.
Геометрический смысл коэффициента k — угол наклона прямой к положительному направлению оси OX, считается против часовой стрелки.
Если известно конкретное значение х, можно вычислить соответствующее значение у.
Для удобства результаты можно оформлять в виде таблицы:
Графиком линейной функции является прямая линия. Для его построения достаточно двух точек, координаты которых удовлетворяют уравнению функции.
Угловой коэффициент отвечает за угол наклона прямой, свободный коэффициент — за точку пересечения графика с осью ординат.
Буквенные множители «k» и «b» — это числовые коэффициенты функции. На их месте могут стоять любые числа: положительные, отрицательные или дроби.
Давайте потренируемся и определим для каждой функций, чему равны числовые коэффициенты «k» и «b».
Функция | Коэффициент «k» | Коэффициент «b» |
---|---|---|
y = 2x + 8 | k = 2 | b = 8 |
y = −x + 3 | k = −1 | b = 3 |
y = 1/8x − 1 | k = 1/8 | b = −1 |
y = 0,2x | k = 0,2 | b = 0 |
Может показаться, что в функции «y = 0,2x» нет числового коэффициента «b», но это не так. В данном случае он равен нулю. Чтобы не поддаваться сомнениям, нужно запомнить: в каждой функции типа «y = kx + b» есть коэффициенты «k» и «b».
Еще не устали? Изучать математику веселее с опытным преподавателем на курсах по математике в Skysmart!
Свойства линейной функции
Построение линейной функции
В геометрии есть аксиома: через любые две точки можно провести прямую и притом только одну. Исходя из этой аксиомы следует: чтобы построить график функции вида «у = kx + b», достаточно найти всего две точки. А для этого нужно определить два значения х, подставить их в уравнение функции и вычислить соответствующие значения y.
Например, чтобы построить график функции y = 1 /3x + 2, можно взять х = 0 и х = 3, тогда ординаты этих точек будут равны у = 2 и у = 3. Получим точки А (0; 2) и В (3; 3). Соединим их и получим такой график:
В уравнении функции y = kx + b коэффициент k отвечает за наклон графика функции:
Проанализируем рисунок. Все графики наклонены вправо, потому что во всех функциях коэффициент k больше нуля. Причем, чем больше значение k, тем круче идет прямая.
В каждой функции b = 3, поэтому все графики пересекают ось OY в точке (0; 3).
В этот раз во всех функциях коэффициент k меньше нуля, и графики функций наклонены влево. Чем больше k, тем круче идет прямая.
Коэффициент b равен трем, и графики также пересекают ось OY в точке (0; 3).
Теперь во всех уравнениях функций коэффициенты k равны. Получили три параллельные прямые.
При этом коэффициенты b различны, и эти графики пересекают ось OY в различных точках:
Прямые будут параллельными тогда, когда у них совпадают угловые коэффициенты.
Подытожим. Если мы знаем знаки коэффициентов k и b, то можем представить, как выглядит график функции y = kx + b.
Если k 0, то график функции y = kx + b выглядит так:
0″ src=»https://user84060.clients-cdnnow.ru/uploads/5fc1049363f94987951092.png» style=»height: 600px;»>
Если k > 0 и b > 0, то график функции y = kx + b выглядит так:
0 и b > 0″ src=»https://user84060.clients-cdnnow.ru/uploads/5fc104b2640e6151326286.png» style=»height: 600px;»>
Точки пересечения графика функции y = kx + b с осями координат:
Решение задач на линейную функцию
Чтобы решать задачи и строить графики линейных функций, нужно рассуждать и использовать свойства и правила выше. Давайте потренируемся!
Пример 2. Написать уравнение прямой, которая проходит через точки A (1; 1); B (2; 4).
Презентация по алгебре на тему «Линейная функция»(7 класс)
Онлайн-конференция
«Современная профориентация педагогов
и родителей, перспективы рынка труда
и особенности личности подростка»
Свидетельство и скидка на обучение каждому участнику
Описание презентации по отдельным слайдам:
Описание слайда:
Линейная функция
МБОУ N70
Учитель Чижова Е.Н.
Описание слайда:
Введение.
История и понятие функции.
Определение линейной функции.
Применение функции в разных сферах науки.
Применение линейной функции в нашей жизни.
Заключение и вывод.
Список источников.
Описание слайда:
Введение
Математику уже затем
знать надо, что она ум в
порядок приводит
М.В. Ломоносов
Недавно с ребятами на уроках алгебры мы узнали о
понятии «линейная функция» и от чего зависит
расположение графиков линейных функций.
Цель: расширить знания по теме «Линейная функция”, узнать о применении в различных сферах деятельности человека.
Описание слайда:
Описание слайда:
исторические сведения
Большинство математических понятий прошли долгий путь развития. Сложный путь прошло и понятие функции. Оно уходит корнями в ту далекую эпоху, когда люди впервые поняли, что окружающие их явления взаимосвязаны. С развитием скотоводства, земледелия, ремесел и обмена увеличивалось количество известных людям зависимостей между величинами.
Идея зависимости некоторых величин восходит к древнегреческой науке. Но греки рассматривали лишь вопросы, имеющие «геометрическую» природу, и не ставили вопроса об общем изучении различных зависимостей. Графическое изображение зависимостей широко использовали Галилео Галилей (1564 – 1642), Пьер Ферма (1601 – 1665) и Рене Декарт (1569 – 1650), который ввел понятие «переменной величины».
Описание слайда:
Происхождение слова «функция»
Слово «функция» (от латинского functio – совершение, выполнение) впервые было употреблено немецким математиком Лейбницем (1646–1716) в 1673 г. в письме к Х. Гюйгенсу (1629–1695) (под функцией он понимал отрезок, длина которого меняется по какому-нибудь определенному закону), а в печати введено с 1694 года. Начиная с 1698 года, Лейбниц ввел также термины «переменная» и «константа».
Описание слайда:
Описание слайда:
Применение функции в разных сферах науки
Применение линейной функции в химии.
Описание слайда:
Применение функции в разных сферах науки
Применение функции в анатомии
Описание слайда:
Описание слайда:
линейная функция в нашей жизни
Графики пословиц
«Каково проживёшь, такую славу наживёшь».
«Чем дальше в лес, тем больше дров.»
«Каши маслом не испортишь.»
Описание слайда:
Заключение
В ходе работы над проектом я приобрела и систематизировала новые знания о линейной функции, узнала много нового о применении линейной зависимости в окружающем мире, научилась использовать линейную функцию в практической деятельности, расширила свой кругозор.
Описание слайда:
Описание слайда:
спасибо за внимание
Если Вы считаете, что материал нарушает авторские права либо по каким-то другим причинам должен быть удален с сайта, Вы можете оставить жалобу на материал.
16. Линейная функция и её график
Рассмотрим примеры функций.
Пример 1. На шоссе расположены пункты Ли В, удалённые друг от друга на 20 км (рис. 29). Мотоциклист выехал из пункта В в направлении, противоположном А, со скоростью 50 км/ч. За t ч мотоциклист проедет 50t км и будет находиться от А на расстоянии 50t + 20 км. Если обозначить буквой s расстояние (в километрах) мотоциклиста до пункта А, то зависимость этого расстояния от времени движения можно выразить формулой
Пример 2. Ученик купил тетради по 3 р. за штуку и ручку за 5 р. Обозначим число купленных тетрадей буквой х, а стоимость покупки (в рублях) буквой у. Получим у = Зх + 5, где х — натуральное число.
В обоих примерах мы встретились с функциями, заданными формулами вида
где х — независимая переменная, k и b — числа.
Такие функции называют линейными функциями.
Определение: Линейной функцией называется функция, которую можно задать формулой вида у = kx + b, где х — независимая переменная, k и b — некоторые числа.
Прямая пропорциональность является частным случаем линейной функции. Действительно, при b = 0 формула у = kx + b принимает вид у = kx, а этой формулой при k ≠ 0 задаётся прямая пропорциональность.
Выясним, какой вид имеет график линейной функции.
Рассмотрим, например, функцию у = 0,5x + 2. Сравним значения функций
у = 0,5x + 2 и у = 0,5x
при одних и тех же значениях x.
Из приведённой таблицы и формул у = 0,5x и у = 0,5x + 2 ясно, что для любого значения аргумента x значение функции у = 0,5x + 2 на 2 единицы больше значения функции у = 0,5x. Если график функции у = 0,5x сдвинуть на 2 единицы вверх (т. е. в направлении оси у), то каждая точка (x0; у0) графика функции у = 0,5x перейдёт в точку (x0; у0 + 2) графика функции у = 0,5x + 2. При этом любая точка графика функции у = 0,5x + 2 получается из соответствующей точки графика функции у = 0,5x.
Следовательно, график функции у = 0,5x + 2 есть прямая, параллельная графику функции у = 0,5x, проходящая через точку (0; 2) (рис. 30).
график функции у = kx + b, где k ≠ 0, есть прямая, параллельная прямой у = kx.
Формула у = kx + b при k = 0 принимает вид у = b. В этом случае графиком функции у = kx + b является прямая, параллельная оси x при b ≠ 0 или сама ось x при b = 0.
На рисунке 32 построен график функции у = 3.
графиком линейной функции является прямая.
Для построения графика линейной функции достаточно найти координаты двух точек графика, отметить эти точки на координатной плоскости и провести через них прямую.
Пример 3. Построим график функции у = 2x + 3.
Решение: Функция у = 2x + 3 линейная, поэтому её графиком является прямая. Используя формулу у = 2х + 3, найдём координаты двух точек графика:
При построении графика линейной функции часто бывает удобно в качестве одной из точек брать точку с абсциссой 0.
Решение: Найдём координаты двух точек графика:
Расположение графика функции у = kx + b на координатной плоскости зависит от значений коэффициентов k и b.
На рисунке 36 изображены прямые, которые являются графиками линейных функций, заданных формулами вида у = kx + b с одинаковыми коэффициентами при х и различными значениями b. Все эти прямые параллельны и наклонены к оси х под одним и тем же углом. Этот угол зависит от коэффициента k.
Укажите эту функцию.
Найдите по графику:
а) массу пустого бидона;
б) массу бидона с одним литром жидкости;
в) массу одного литра жидкости;
г) объём жидкости в бидоне, если общая масса бидона с жидкостью равна 3 кг.
Пользуясь графиком, найдите:
Пользуясь графиком, ответьте на вопросы:
С помощью этих графиков ответьте на вопросы:
а) какое время была в пути первая машина; вторая машина;
б) какая машина начала своё движение раньше;
в) с какой скоростью двигалась каждая машина;
г) какая машина прибыла в город В раньше?
Алгебра
Именная карта банка для детей
с крутым дизайном, +200 бонусов
Закажи свою собственную карту банка и получи бонусы
План урока:
Понятие функции
Понятие функции в школьной программе впервые встречается в 7 классе, поэтому настоятельно рекомендуем перечитать посвященный этой теме урок. Напомним, что функцией (в учебной литературе может использоваться сокращение ф-ция) называется соответствие между элементами двух множеств или, другими словами, зависимость между двумя величинами. Чаще всего в алгебре рассматриваются числовые ф-ции, которые заданы аналитически, то есть формулой. В качестве примера можно привести запись
Здесь х – это независимая переменная, или аргумент, а у – зависимая величина, или просто функция. Принципиально важно, что каждому значению аргумента соответствует только одно значение зависимой величины. Часто в математике используют запись
Она читается как «игрек равен эф от икс» и означает, что величина у как-то зависит от х. По сути, она равноценна записи
Если в скобках стоит конкретное число, то запись означает значение ф-ции при этом значении аргумента.
У каждой ф-ции есть область допустимых значений (используется сокращение ОДЗ), или область определения функции. Это те значения аргумента, при которых ф-ция определена. Здесь возможны два случая. В первом область определения указывается прямо. Например, если рассматривается функция у = х 4 при значениях х от 1 до 3, то и областью определения будет всё множество чисел от 1 до 3. Для обозначения области определения используется запись D(y) или D(f). При изучении неравенств мы уже познакомились с такими объектами, как числовые промежутки. Именно с их помощью указывают ОДЗ.
Пример. Постройте график функции у = х, если D(y) = [– 3; 4].
Решение. Ф-ция у = х – это линейная функция, мы уже умеем строить их графики (они представляют собой прямую линию). Выглядеть он будет так:
Однако в условии также есть запись D (y) = [– 3; 4], которая означает, что ф-ция определена только при х от – 3 до 4. С учетом этого условия график несколько преобразится:
Грубо говоря, часть графика, которая не входит в область определения, просто «отрезана».
Значительно чаще область определения явно не указывается. В этом случае предполагается, что ф-ция определена во всех точках числовой прямой, в которых ее вообще возможно вычислить. Например, ф-цию у = 9х 3 – 47 можно вычислить при любом значении х, поэтому ее область определения – вся числовая прямая, то есть D(y) = (– ∞; + ∞).
А когда же вычислить функцию невозможно? К этому уроку нам известны две таких ситуации:
Например, вычислить ф-цию у = 5/х при х = 0 невозможно, поэтому ее область определения – вся числовая прямая, кроме нуля, то есть
имеет область определения D(y) = [5; + ∞), так как при х 2 при D(y) = [– 2; 2] областью значений будет промежуток [0; 4], то есть Е(у) = [0; 4]. Это видно из графика функции:
Ещё раз напомним, что область определения и область значения функции указываются с помощью числовых промежутков.
Теперь перейдем к тем понятиям, которые не изучались ранее. Первое из них – это нули функции. Так называют те значения аргумента, при которых функция обращается в ноль.
есть два нуля, х = 4 и х = 5. Убедиться в этом можно подстановкой:
у(4) = 4 2 – 9•4 + 20 = 0
у (5) = 5 2 – 9•5 + 20 = 0
Для нахождения нулей ф-ции у = f(x) надо просто решить уравнение
Например, чтобы найти нули приведенной выше функции
надо решить уравнение
Сделаем это, ведь мы уже умеем решать квадратные уравнения:
На графике нули ф-ции – это те точки, в которых график пересекает ось Ох:
Ещё одно новое понятие – промежутки знакопостоянства. Так называют промежутки числовой прямой, на которых ф-ция либо только положительна, либо только отрицательна. Для наглядности покажем их на графике:
Пусть есть ф-ция у = f(x). Для нахождения промежутков знакопостоянства необходимо решить неравенства f(x)>0 и у = f(x) 0:
Получаем, что функция положительна на промежутке (12; + ∞).
Аналогично решив неравенство 3х – 36 2 – 5х. Найдите такое значение величины а, для которого выполняется условие у(а) = у(а + 2).
Решение. Очевидно, что у(а) = а 2 – 5а. Теперь вычислим у(а + 2):
у(а + 2) = (а + 2) 2 – 5(а + 2) = а 2 + 4а + 4 – 5а – 10 = а 2 – а – 6.
Теперь приравняем значения у(а) и у(а + 2):
а 2 – 5а = а 2 – а – 6
а 2 – 5а – а 2 + а = – 6
Убедимся, что мы нашли требуемое значение а:
у(1,5) = 1,5 2 – 5•1,5 = 2,25 – 7,5 = – 5,25
у(1,5 + 2) = у(3,5) = 3,5 2 – 5•3,5 = 12,25 – 17,5 = – 5,25
Растяжение и сжатие графиков функций
Пусть на координатной плоскости есть точка А с координатами (х0; у0). Куда переместится эта точка, если ее ордината (то есть у0) увеличится, например, в два или в три раза? Она отодвинется от оси Ох. Если же ее ордината уменьшится, то точка приблизится к оси. Наконец, если ордината поменяет знак, то точка, изначально, лежащая выше оси, окажется ниже её. Проиллюстрируем это на картинке:
Пусть есть пара функций у(х) и g = k•у(х), где k– какое-то постоянное число (константа), не равная нулю. Примерами таких пар являются:
Посмотрим, как связаны графики таких функций. На рисунке красным цветом показана функция у(х), а синим g = 2у(x):
При любом значении аргумента выполняется условие g(х) = 2у(х). Это значит, что ордината (координата у) каждой точки графика g(х) вдвое больше, чем ордината соответствующей точки графика у(х). В частности, отрезок АА2 вдвое длиннее отрезка АА1:
Аналогично можно записать, что
Таким образом, график g(x) выглядит так, будто бы график у(х) «растянули» в 2 раза. Каждая точка «переезжает» на новое место, сдвигаясь по вертикали. Так, если точка А1 имела координаты (– 6; 2), то при растяжении графика функции она получит координаты (– 6; 4), то есть ее координата у увеличится вдвое. Точка B1 имела координаты (2; – 2), а в графике g(х) занимает позицию (2; – 4).
Убедимся в этом на примере ф-ций у = х 2 и g = 2х 2 :
В общем случае говорят, что график функции g(х) = ky(x) получается растяжением графика у(х) в k раз.
Пример. Функция у(х) задана графически:
Постройте график функции g(х) = 3у(х).
Решение. Каждую точку отодвинем от оси Ох, увеличив координату у точек в 3 раза:
При сжатии графика каждая точка параболы приближается к оси Ох, при этом ордината точек уменьшается вдвое. Так, точка А2 с координатами (3; 9) переходит в точку А1 с координатами (3; 4,5).
Отдельно стоит рассмотреть случай, при котором коэффициент k является отрицательным. В этом случае график отображается симметрично относительно оси Ох. Те точки, которые имели изначально положительную ординату и находились выше Ох, в результате получают отрицательную ординату и оказываются ниже оси Ох. Покажем на рисунке графики ф-ций у = х 2 и у = – х 2 (то есть k =– 1):
Если же, например, коэффициент k = – 2, то надо и растянуть график, и перевернуть его относительно оси Ох. В частности, так выглядит график у = – 2х 2 :
Параллельный перенос графиков функций
Теперь посмотрим, как передвинется отдельная точка на координатной плоскости, если к ее ординате добавить какое-нибудь число. Если это число положительное, то точка поднимется выше, а если отрицательное, то она опустится:
Это означает, что если к какой-нибудь функции добавить некоторое число, то график функции переместится вверх или вниз. Для примера построим графики функций у = х 2 + 2 и у = х 2 – 5:
Параллельный перенос возможен не только в вертикальном, но и в горизонтальном направлении. Для такого перемещения надо изменить абсциссу точки, а не ординату:
Аналогично может сдвинуться не только точка, но и целый график функции. Если вместо аргумента х подставить в ф-цию величину (х +n), то график сместится на n единиц влево.
у(0) = 0 2 = 0 и g(– 3) = g(– 3 + 3) 2 = 0 2 = 0
у(– 1) = (– 1) 2 = 1 и g(– 4) = g(– 4 + 3) 2 = (– 1) 2 = 1
у(– 2) = (– 2) 2 = 4 и g(– 5) = g(– 5 + 3) 2 = (– 2) 2 = 4
Точка А1 сдвинулась влево на 3 единицы и перешла в точку А2. Аналогично точка В1 отобразилась в точку В2.
Пусть в общем случае есть функции у = у(х) и g(x) = у(х +n), где n – некоторое постоянное число. Значение у(х) в точке х0 обозначается как у0. Теперь найдем значение g(x) в точке (х0 – n):
Получили, то же самое значение, что и у у(х). Покажем это на рисунке:
Рассмотрим теперь случай, когда график сдвигается вправо. Для этого из аргумента исходной функции надо вычесть какое-то число. На рисунке показаны графики функций у = 2х и у = 2(х – 4):
Каждая точка исходного графика (например, А1) «переехала» на 4 единицы вправо.
Надо понимать, что иногда один график можно получить из другого в несколько переходов. Пусть надо построить график у = – (х – 4) 2 + 5. Его можно получить из обычной параболы у = х 2 в три шага.
Последний шаг – это построение графика у = – (х – 4) 2 + 5. Его можно получить, подняв предыдущий график на 5 единиц вверх:
Гипербола и обратная пропорциональность
Найдем область определения функции у = 1/х. Ясно, что аргумент не может равняться нулю, так как иначе получим деление на ноль:
При любых других значениях х значение у вычислить можно, а потому областью определения будет промежуток (– ∞; 0)⋃(0;+ ∞).
При положительных значениях аргумента ф-ция также будет положительной:
При отрицательных х величина у будет становиться отрицательной:
Это означает, что график ф-ции будет располагаться в I и III четвертях.
Можно заметить, что чем больше х, тем ближе у к нулю:
И наоборот, чем ближе х к нулю, тем больше у:
При этом у не может равняться нулю. Действительно, дробь равна нулю только тогда, когда ее числитель равен нулю. Однако варьируя х, мы меняем только знаменатель, а в числителе остается единица. Поэтому областью значений функции у = х – 1 является промежуток (– ∞; 0)⋃(0;+ ∞).
Для построения графика найдем некоторые точки графика и занесем их в таблицу. Мы построим две таблицы – одну для положительных х, другую для отрицательных:
Теперь можно посмотреть и на сам график:
Первое, что бросается в глаза – это то, что график не представляет собой единую, непрерывную линию. Он разбит на две ветви, одна из которых располагается в III четверти, а другая – в I четверти. Такой «разрыв» связан с тем, что ноль не входит в область определения ф-ции.
Также можно заметить симметричность графика. Действительно, одна из ветвей является симметричным отображением второй ветви.
Построенный нами график называется гиперболой.
На координатной плоскости есть две прямые линии, к которым гипербола приближается, но при этом он не касается их. Это оси Ох и Оу. Для наглядности покажем их штриховой линией:
В математике подобные линии называют асимптотами функции. Горизонтальная асимптота прямая соответствует линии х = 0, а вертикальная асимптота линии у = 0.
Зная, как выглядит график у = 1/х, мы можем построить и другие, схожие с ним графики для ф-ций у = k/х, где k– это некоторое число. Их можно получить из гиперболы, используя сжатие и растяжение графиков. Если коэффициент k больше единицы, то график «отдаляется» от осей Ох и Оу:
Все эти линии являются примерами гипербол. Если коэффициент k отрицательный, то графики переворачиваются относительно оси Ох и занимают II и IV четверти:
Все приведенные зависимости вида у = k/х называют обратными пропорциональностями.
Примерами обратной пропорциональности являются ф-ции:
Обратная пропорциональность очень часто встречается в жизни. Так, время, затрачиваемое на поездку на автомобиле, обратно пропорционально средней скорости движения. Количество товара, которое можно купить на одну зарплату, обратно пропорционально стоимости этого товара.
Дробно-линейная функция
Теперь рассмотрим несколько более сложные ф-ции, чьи графики, однако, также представляют собой гиперболу. Пусть есть ф-ция вида
Как будет выглядеть ее график? Для ответа на этот вопрос выполним преобразование:
Здесь мы в числителе и знаменателе добавили и сразу вычли слагаемое 2.Этот прием помог нам выделить целую часть из дроби. В результате мы получили ф-цию, график которой можно получить с помощью двух параллельных переносов графика у = 6/х. Сначала график сместится на две единицы вправо:
На следующем шаге график поднимется на единицу вверх:
Стоит обратить внимание, что при таком передвижении гиперболы передвигаются и асимптоты графика гиперболы:
представляет собой дробь, являющуюся отношением двух линейных многочленов, х + 3 и х – 2. В математике подобные ф-ции называют дробно-линейными функциями. В качестве примеров дробно-линейных функций можно привести:
Из любой дробно-линейной функции можно выделить целую часть. Покажем это на нескольких примерах:
Во всех этих случаях график дробно-линейной функции можно построить с помощью двух параллельных переносов гиперболы.
Однако есть одно исключение. Иногда при выделении из дроби целой части дробной части не остается вовсе, то есть линейные полиномы можно сразу сократить. Например:
Графиком таких функций являются прямые горизонтальные линии. Однако на них должна быть одна «исключенная». Действительно, пусть надо построить график ф-ции
Проведя преобразования, получим
то есть у = 2. Однако в знаменателе дроби не может стоять ноль. Если же подставить в дробь х = – 2, то получим деление на ноль:
Поэтому график ф-ции будет выглядеть так:
Итак, по итогам урока мы узнали: