Один из самых интересных аспектов маршрутизаторов Cisco, особенно для пользователей, малознакомых с маршрутизацией, — это метод, который маршрутизатор использует для выбора наилучшего из доступных маршрутов, созданных протоколами маршрутизации, при помощи ручной настройки и другими способами. Несмотря на то, что процесс выбора маршрута проще, чем можно предположить, полное понимание этого процесса требует некоторых знаний принципа работы маршрутизаторов Cisco.
Связанные процессы
Построение таблицы маршрутизации
Маршрутизатор принимает решение об установке маршрутов, представленных процессами маршрутизации, основываясь на административном расстоянии маршрута. Путь с наименьшим административным расстоянием до места назначения (по сравнению с другими маршрутами таблицы), устанавливается в таблицу маршрутизации. Если этот маршрут не является маршрутом с лучшим административным расстоянием, он отклоняется.
Чтобы лучше понять этот процесс, рассмотрим пример. Предположим, что в маршрутизаторе работает 4 процесса маршрутизации — EIGRP, OSPF, RIP и IGRP. Все 4 процесса получили данные о различных маршрутах к сети 192.168.24.0/24, и каждый выбрал наилучший путь к этой сети, используя внутренние метрики и процессы.
Каждый из четырех процессов пытается установить свой маршрут к сети 192.168.24.0/24 в таблицу маршрутизации. Каждому из процессов маршрутизации назначено административное расстояние, которое используется для принятия решения об установке маршрута.
Административные расстояния по умолчанию
Подключенное
Поскольку внутренний маршрут EIGRP имеет наилучшее административное расстояние (чем меньше административное расстояние, тем выше приоритет), он устанавливается в таблицу маршрутизации.
Резервные маршруты
Что другие протоколы — RIP, IGRP и OSPF — делают с неустановленными маршрутами? Что происходит, если оптимальный маршрут, полученный от протокола EIGRP, недоступен? ПО Cisco IOS использует два похода к решению этой проблемы. Первый заключается в том, что каждый процесс маршрутизации периодически пытается установить свои лучшие маршруты. Если наиболее предпочтительный маршрут недоступен, во время следующей попытки будет выбран маршрут, следующий по приоритету (в соответствии с административным расстоянием). Другое решение — протокол маршрутизации, которому не удалось установить маршрут в таблицу, должен удерживать этот маршрут. При этом таблица маршрутизации должна сообщить, если лучший маршрут даст сбой.
Для протоколов, не имеющих своих таблиц с данными маршрутизации, например IGRP, используется первый метод. Каждый раз, когда протокол IGRP получает обновление маршрута, он пытается установить обновленные данные в таблицу маршрутизации. Если в таблице маршрутизации уже есть маршрут к этому месту назначения, попытка установки заканчивается неудачей.
Протоколы, использующие собственную базу данных маршрутизации, например EIGRP, IS-IS, OSPF, BGP и RIP, регистрируется резервный маршрут, если первоначальная попытка установить маршрут оказывается неудачной. Если маршрут, установленный в таблице маршрутизации, отказывает по тем или иным причинам, процесс обслуживания таблицы маршрутизации вызывает процессы всех протоколов маршрутизации, которые зарегистрировали резервный маршрут, и просит установить этот маршрут в таблицу. Если резервный маршрут зарегистрировали несколько протоколов, предпочтительный маршрут выбирается на основе административного расстояния.
Изменение административного расстояния
Административное расстояние по умолчанию не всегда будет подходящим для конкретной сети, поэтому административные расстояния можно изменить, например, чтобы дать маршрутам RIP более высокий приоритет по сравнению с маршрутами IGRP. Перед рассмотрением процесса изменения административных расстояний, необходимо понять последствия этого изменения.
Изменение административного расстояния в протоколах маршрутизации опасно! Изменение расстояний по умолчанию может привести к образованию петель маршрутизации. Мы рекомендуем изменять административное расстояние с осторожностью, полностью осознавая цели и последствия своих действий.
Для полных протоколов изменение расстояния относительно просто. Для этого необходимо ввести команду distance в режиме субконфигурации процесса маршрутизации. Кроме того, расстояние маршрутов, полученных из одного источника можно изменять только в некоторых протоколах, и только для отдельных маршрутов.
Чтобы изменить расстояние для статических маршрутов, введите нужное расстояние после следующей команды ip route:
ip route network subnet mask next hop distance
Изменить расстояние для всех статических маршрутов одновременно нельзя.
Как метрики влияют на процесс выбора маршрута
Маршруты выбираются и встраиваются в таблицу маршрутизации на основе административного расстояния протокола маршрутизации. Маршруты с наименьшим административным расстоянием, полученные от протокола маршрутизации, устанавливаются в таблицу маршрутизации. Если к одному месту назначения существует несколько путей, основанных на одном протоколе маршрутизации, эти будут иметь одинаковые административные расстояния. В этом случае оптимальный путь будет выбираться на основе метрики. Метрики — это значения, привязанные к определенным маршрутам, и классифицирующие их от наиболее предпочтительных до наименее предпочтительных. Параметры, используемые для расчета метрик, зависят от протокола маршрутизации. Путь с самой низкой метрикой выбирается в качестве оптимального пути и устанавливается в таблицу маршрутизации. Если к одному месту назначения существует несколько путей с одинаковыми метриками, нагрузка распределяется по этим путям.
Длины префиксов
Давайте посмотрим, как механизм переадресации использует данные таблицы маршрутизации для принятия решений о переадресации.
Принятие решений о переадресации
Давайте проанализируем три маршрута, которые мы только что установили в таблицу маршрутизации, и посмотрим, как они выглядят на маршрутизаторе.
router# show ip route . D 192.168.32.0/26 [90/25789217] via 10.1.1.1 R 192.168.32.0/24 [120/4] via 10.1.1.2 O 192.168.32.0/19 [110/229840] via 10.1.1.3 .
Если пакет прибывает на интерфейс маршрутизатора с адресом назначения 192.168.32.1, какой маршрут выберет маршрутизатор? Это зависит от длины префикса или количества бит, установленного в маске подсети. При переадресации пакета более длинным префиксам всегда отдается предпочтение над короткими.
В этом примере, пакет, отправленный по адресу 192.168.32.1 направляется в сеть 10.1.1.1, так как адрес 192.168.32.1 находится в сети 192.168.32.0/26 (192.168.32.0–192.168.32.63). Адресу соответствуют еще два доступных маршрута, но маршрут 192.168.32.0/26 имеет самый длинный префикс в таблице маршрутизации (26 бит против 24 и 19 бит).
Аналогично, если пакет, отправленный по адресу 192.168.32.100, прибывает на один из интерфейсов маршрутизатора, он перенаправляется по адресу 10.1.1.2, поскольку адрес 192.168.32.100 не попадает в сеть 192.168.32.0/26 (192.168.32.0–192.168.32.63), но попадает в сеть назначение 192.168.32.0/24 (192.168.32.0–192.168.32.255). И снова он попадает в диапазон сети 192.168.32.0/19, но сеть 192.168.32.0/24 имеет более длинный префикс.
IP Classless
При использовании команды конфигурации ip classless процессы маршрутизации и переадресации становятся довольно запутанными. В реальности команда «IP classless» влияет только на работу процессов переадресации IOS, но не влияет на построение таблицы маршрутизации. Если функция «IP classless» не настроена (с помощью команды no ip classless), маршрутизатор не будет переадресовать пакеты в подсети. Для примера снова поместим три маршрута в таблицу маршрутизации и проведем пакеты через маршрутизатор.
Примечание. Если суперсеть или маршрут по умолчанию получены от протоколов IS-IS или OSPF, команда конфигурации no ip classless игнорируется. В этом случае режим коммутация пакетов работает так, как если бы команда ip classless была настроена.
router# show ip route . 172.30.0.0/16 is variably subnetted, 2 subnets, 2 masks D 172.30.32.0/20 [90/4879540] via 10.1.1.2 D 172.30.32.0/24 [90/25789217] via 10.1.1.1 S* 0.0.0.0/0 [1/0] via 10.1.1.3
На этом основана маршрутизация типа classful. Если часть основной сети известна, но подсеть этой основной сети, для которой предназначен пакет, неизвестна, пакет отбрасывается.
Самым сложным для понимания аспектом этого правила является то, что маршрутизатор использует только маршрут по умолчанию, если основная сеть назначения отсутствует в таблице маршрутизации.
Это может вызвать проблемы в сети, в которой удаленный участок с одним подключением к остальной части сети не использует протоколы маршрутизации, как показано в примере.
Маршрутизатор удаленного узла настраивается следующим образом:
interface Serial 0 ip address 10.1.2.2 255.255.255.0 ! interface Ethernet 0 ip address 10.1.1.1 255.255.255.0 ! ip route 0.0.0.0 0.0.0.0 10.1.2.1 ! no ip classless
В такой конфигурации узлы на удаленном узле могут достичь назначения через Интернет (через облако 10.x.x.x), но не назначений в облаке 10.x.x.x, которое является корпоративной сетью. Поскольку удаленный маршрутизатор имеет данные о части сети 10.0.0.0/8 и двух подсетях с прямым подключением, но ничего не знает о другой подсети 10.x.x.x, он предполагает, что другие подсети диапазона не существуют, и отбрасывает пакеты, которые в них направлены. Однако назначение трафика, направленного в Интернет не находится в диапазоне адресов 10.x.x.x и поэтому корректно направляется в маршрут по умолчанию.
Настройка команды ip classless на удаленном маршрутизаторе устраняет эту проблему. Она позволяет удаленному маршрутизатору игнорировать границы сетей classful в таблице маршрутизации и просто выбирать маршрут с наибольшей длиной префикса.
Выводы
Подводя итог, переадресация состоит из трех наборов процессов: протоколы маршрутизации, таблица маршрутизации и процесс переадресации, который принимает решения о переадресации и коммутирует пакеты. Эти три набора процессов и их взаимосвязь иллюстрируются ниже.
Маршрут с наибольшей длиной префикса всегда выигрывает среди маршрутов, установленных в таблице маршрутизации. Протокол маршрутизации с самым малым административным расстоянием выигрывает при установке маршрутов в таблицу маршрутизации.
Есть вопросы? Обращайтесь в «Аквилон-А», чтобы узнать подробности и получить именно то, что вам требуется.
Маршрутизация — принцип работы и таблица маршрутизации
Маршрутизация работает на сетевом уровне модель взаимодействия открытых систем OSI. Маршрутизация — это поиск маршрута доставки пакета в крупной составной сети через транзитные узлы, которые называются маршрутизаторы.
Маршрутизация состоит из двух этапов:
Варианты действий маршрутизатора
В качестве примера, рассмотрим схему составной сети, здесь показаны отдельные подсети, для каждой подсети есть ее адрес и маска, а также маршрутизаторы, которые объединяют эти сети.
Рассмотрим маршрутизатор D, на него пришел пакет, и маршрутизатор должен решить, что ему делать с этим пакетом. Начнем с того, какие вообще возможны варианты действий у маршрутизатора. Первый вариант, сеть которой предназначен пакет подключена непосредственно к маршрутизатору. У маршрутизатора D таких сетей 3, в этом случае маршрутизатор передает пакет непосредственно в эту сеть.
Второй вариант, нужная сеть подключена к другому маршрутизатору (А), и известно, какой маршрутизатор нужен. В этом случае, маршрутизатор D передает пакет на следующий маршрутизатор, который может передать пакет в нужную сеть, такой маршрутизатор называется шлюзом.
Третий вариант, пришел пакет для сети, маршрут которой не известен, в этом случае маршрутизатор отбрасывает пакет. В этом отличие работы маршрутизатора от коммутатора, коммутатор отправляет кадр который он не знает куда доставить на все порты, маршрутизатор так не делает. В противном случае составная сеть очень быстро может переполнится мусорными пакетами для которых не известен маршрут доставки.
Что нужно знать маршрутизатору для того чтобы решить куда отправить пакет?
Таблица маршрутизации
Эту информацию маршрутизатор хранит в таблице маршрутизации. На картинке ниже показан ее упрощенный вид, в которой некоторые служебные столбцы удалены для простоты понимания.
Первые два столбца это адрес и маска подсети, вместе они задают адрес подсети. Затем столбцы шлюз, интерфейс и метрика. Столбец интерфейс говорит о том, через какой интерфейс маршрутизатора нам нужно отправить пакет.
Таблица маршрутизации Windows
Продолжим рассматривать маршрутизатор D, у него есть три интерфейса. Ниже на картинке представлен вид таблицы маршрутизации для windows, которые в качестве идентификатора интерфейса используют ip-адрес, который назначен этому интерфейсу. Таким образом в столбце интерфейс есть 3 ip-адреса, которые соответствуют трем интерфейсам маршрутизатора.
Столбец шлюз, говорит что делать с пакетом, который вышел через заданный интерфейс. Для сетей, которые подключены напрямую к маршрутизатору D, в столбце шлюз, указывается «подсоединен», которое говорит о том, что сеть подключена непосредственно к маршрутизатору и передавать пакет нужно напрямую в эту сеть.
Если же нам нужно передать пакет на следующий маршрутизатор то в поле шлюз указывается ip-адрес этого маршрутизатора.
Таблица маршрутизацииLinux
В операционной системе linux таблица маршрутизации выглядит немного по-другому, основное отличие это идентификатор интерфейсов. В linux вместо ip-адресов используется название интерфейсов. Например, wlan название для беспроводного сетевого интерфейса, а eth0 название для проводного интерфейса по сети ethernet.
Также здесь некоторые столбцы удалены для сокращения (Flags, Ref и Use). В других операционных системах и в сетевом оборудовании вид таблицы маршрутизации может быть несколько другой, но всегда будут обязательны столбцы ip-адрес, маска подсети, шлюз, интерфейс и метрика.
Только следующий шаг!
Часто возникает вопрос, что делать, если сеть для который пришел пакет находится не за одним маршрутизатором? Чтобы в неё попасть, нужно пройти не через один, а через несколько маршрутизаторов, что в этом случае нужно вносить в таблицу маршрутизации.
В таблицу маршрутизации записываем только первый шаг, адрес следующего маршрутизатора, все что находится дальше нас не интересует.
Считаем, что следующий маршрутизатор должен знать правильный маршрут до нужной нам сети, он знает лучше следующий маршрутизатор, тот знает следующий шаг и так далее, пока не доберемся до нужные нам сети.
Метрика
Можно заметить, что в нашей схеме в одну и ту же сеть, например вот в эту (10.2.0.0/16) можно попасть двумя путями, первый путь проходят через один маршрутизатор F, а второй путь через два маршрутизатора B и E.
В этом отличие сетевого уровня от канального. На канальном уровне у нас всегда должно быть только одно соединение, а на сетевом уровне допускаются и даже поощряются для обеспечения надежности несколько путей к одной и той же сети.
Какой путь выбрать? Для этого используются поле метрика таблицы маршрутизации.
Метрика это некоторое число, которые характеризует расстояние от одной сети до другой. Если есть несколько маршрутов до одной и той же сети, то выбирается маршрут с меньшей метрикой.
Раньше, метрика измерялось в количестве маршрутизаторов, таким образом расстояние через маршрутизатор F было бы один, а через маршрутизаторы B и E два.
Однако сейчас метрика учитывает не только количество промежуточных маршрутизаторов, но и скорость каналов между сетями, потому что иногда бывает выгоднее пройти через два маршрутизатора, но по более скоростным каналам. Также может учитываться загрузка каналов, поэтому сейчас метрика — это число, которое учитывает все эти характеристики. Мы выбираем маршрут с минимальной метрикой в данном примере выше, будет выбран первый маршрут через маршрутизатор F.
Записи в таблице маршрутизации
Откуда появляются записей в таблице маршрутизации? Есть два варианта статическая маршрутизация и динамическая маршрутизация.
При статической маршрутизации, записи в таблице маршрутизации настраиваются вручную, это удобно делать если у вас сеть небольшая и изменяется редко, но если сеть крупная, то выгоднее использовать динамическую маршрутизацию, в которой маршруты настраиваются автоматически. В этом случае маршрутизаторы сами изучают сеть с помощью протоколов маршрутизации RIP, OSPF, BGP и других.
Преимущество динамической маршрутизации в том, что изменение в сети могут автоматически отмечаться в таблице маршрутизации. Например, если вышел из строя один из маршрутизаторов, то маршрутизаторы по протоколам маршрутизации об этом узнают, и уберут маршрут, который проходит через этот маршрутизатор. С другой стороны, если появился новый маршрутизатор, то это также отразится в таблице маршрутизации автоматически.
Маршрут по умолчанию
Если маршрутизатор не знает куда отправить пакет, то такой пакет отбрасывается. Таким образом получается, что маршрутизатор должен знать маршруты ко всем подсетям в составной сети. На практике для крупных сетей, например для интернета это невозможно, поэтому используются следующие решения.
В таблице маршрутизации назначается специальный маршрутизатор по умолчанию, на которой отправляются все пакеты для неизвестных сетей, как правило это маршрутизатор, который подключен к интернет.
Предполагается что этот маршрутизатор лучше знает структуру сети, и способен найти маршрут в составной сети. Для обозначения маршрута по умолчанию, в таблице маршрутизации используются четыре нуля в адресе подсети и четыре нуля в маске (0.0.0.0, маска 0.0.0.0), а иногда также пишут default.
Ниже пример маршрута по умолчанию в таблице маршрутизации в операционной системе linux.
Ip-адрес и маска равны нулю, в адрес и шлюз указываются ip-адрес маршрутизатора по умолчанию.
Длина маски подсети
Рассмотрим пример. Маршрутизатор принял пакет на ip-адрес (192.168.100.23), в таблице маршрутизации есть 2 записи (192.168.100.0/24 и 192.168.0.0/16) под который подходит этот ip-адрес, но у них разная длина маски. Какую из этих записей выбрать? Выбирается та запись, где маска длиннее, предполагается, что запись с более длинной маской содержит лучший маршрут интересующей нас сети.
Чтобы понять почему так происходит, давайте рассмотрим составную сеть гипотетического университета. Университет получил блок ip-адресов, разделил этот блок ip-адресов на две части, и каждую часть выделил отдельному кампусу.
На кампусе находятся свои маршрутизаторы, на которых сеть была дальше разделена на части предназначенные для отдельных факультетов. Разделение сетей производится с помощью увеличения длины маски, весь блок адресов имеет маску / 16, блоки кампусов имеют маску / 17, а блоки факультетов / 18.
Ниже показан фрагмент таблицы маршрутизации на маршрутизаторе первого кампуса. Он содержит путь до сети первого факультета, 2 факультета, до обще университетской сети, который проходит через университетский маршрутизатор, а также маршрут по умолчанию в интернет, который тоже проходит через обще университетский маршрутизатор.
Предположим, что у на этот маршрутизатор пришел пакет предназначенный для второго факультета, что может сделать маршрутизатор? Он может выбрать запись, которая соответствует второму факультету и отправить непосредственно в сеть этого факультета, либо может выбрать запись, которая соответствует всей университетской сети, тогда отправит на университетский маршрутизатор, что будет явно неправильным.
И так получается, что выбирается всегда маршрут с маской максимальной длины. Общие правила выбора маршрутов следующие.
Следует отметить, что таблица маршрутизации есть не только у сетевых устройств маршрутизаторов, но и у обычных компьютеров в сети. Хотя у них таблица маршрутизации гораздо меньше.
Для того чтобы просмотреть таблицу маршрутизации, можно использовать команды route или ip route (route print (Windows); route и ip route (Linux)).
Маршрутизация — поиск маршрута доставки пакета между сетями через транзитные узлы — маршрутизаторы.
Маршрутизация – это процесс определения пути следования информации в сетях связи. Маршрутизация служит для приема пакета от одного устройства и передаче его другому устройству через другие сети.
Маршрутизатором или шлюзом называется узел сети с несколькими интерфейсами, каждый из которых имеет свой MAC-адрес и IP адрес.
Виды маршрутизации
1. Прямая маршрутизация. При прямой маршрутизации отправитель в определенной IP-сети может напрямую передавать кадры любому получателю в той же сети. При этом не требуется функциональность IP-маршрутизации.
Для этого сравнивает свой номер сети 10 с номером сети получателя 10. Делает вывод, что узел-получатель находится в одном с ним сегменте сети.
С помощью протокола ARP определяет MAC-адрес узла-получателя и посылает пакет по этому адресу.
ARP (англ. Address Resolution Protocol — протокол определения адреса) — протокол в компьютерных сетях, предназначенный для определения MAC-адреса, имея IP-адрес другого компьютера.
2. Косвенная маршрутизация. Косвенная маршрутизация происходит в том случае, если отправитель и получатель находятся в разных IP-сетях. Косвенная маршрутизация требует, чтобы отправитель передавал пакеты маршрутизатору для доставки их через распределённую сеть.
Например, узел 10.1.1.1 имеет пакет, который нужно отправить узлу 172.16.0.1.
1. Узел назначения находится не на одной с передающим узлом сети. Узел 10.1.1.1 сконфигурирован так, что любые пакеты, требующие косвенной маршрутизации, передаются его шлюзу по умолчанию – маршрутизатору 1.
2. Чтобы доставить пакет маршрутизатору 1, узлу 10.1.1.1 необходим MAC-адрес маршрутизатора 10.3.3.3. Если МАС-адрес узлу 10.1.1.1 неизвестен, он отправляет ARP-запрос, чтобы его получить. Затем пакет, предназначенный для 172.16.0.1 отправляется маршрутизатору 1.
3. Маршрутизатор 1 осознает, что он подсоединен к сети 172.16. и полагает, что узел 172.16.0.1 должен быть частью этой сети. Маршрутизатор 1 реализует свою собственную процедуру прямой маршрутизации и посылает ARP-запрос, ища узел назначения.
Требования к процессу маршрутизации
В процессе маршрутизации роутеру необходимо:
Таблицы маршрутизации
Таблица маршрутизации – это база данных, хранящаяся на маршрутизаторе, которая описывает соответствие между адресами назначения и интерфейсами, через которые следует отправить пакет данных до следующего узла.
Таблица маршрутизации содержит: адрес узла назначения, маску сети назначения, адрес шлюза, интерфейс, метрика. Пример:
Адрес шлюза – обозначает адрес маршрутизатора в сети на который необходимо отправить пакет, следующий до указанного адреса назначения.
Интерфейс – физический порт через который передается пакет.
Маска подсети — битовая маска для определения по IP-адресу адреса подсети и адреса узла этой подсети. В отличие от IP-адреса маска подсети не является частью IP-пакета.
Сетевой адрес — идентификатор устройства, работающего в компьютерной сети.
Способы размещения записей в таблицу
Размещение записей в таблице маршрутизации может производиться тремя различными способами.
Первый способ предполагает применение прямого соединения при котором маршрутизатор сам определяет подключенную подсеть.
Прямой маршрут — это маршрут, который является локальным по отношению к маршрутизатору.
Если один из интерфейсов маршрутизатора соединен с какой-либо сетью напрямую, то при получении пакета, адресованного такой подсети, маршрутизатор сразу отправляет пакет на интерфейс, к которому она подключена.
Прямое соединение является наиболее достоверным способом маршрутизации.
Второй способ предполагает занесение маршрутов вручную. В данном случае имеет место статическая маршрутизация.
Статический маршрут определяет IP-адрес следующего соседнего маршрутизатора или локальный выходной интерфейс, который используется для направления трафика к определенной подсети-получателю.
Статические маршруты должны быть заданы на обеих концах канала связи между маршрутизаторами, иначе удаленный маршрутизатор не будет знать маршрута, по которому нужно отправлять ответные пакеты и будет организована лишь односторонняя связь.
Третий способ подразумевает автоматическое размещение записей с помощью протоколов маршрутизации. Данный способ называется динамической маршрутизацией.
Протоколы динамической маршрутизации могут автоматически отслеживать изменения в топологии сети. Успешное функционирование динамической маршрутизации зависит от выполнения маршрутизатором двух основных функций:
Расчет метрики
В качестве параметров для расчет метрик могут выступать:
Если маршрутизатору известно более одного маршрута до сети получателя, то он сравнивает метрики этих маршрутов и передает в таблицу маршрутизации маршрут с наименьшей метрикой (стоимостью).
Команда Route
Команда Route выводит на экран все содержимое таблицы IP-маршрутизации и изменяет записи. Запущенная без параметров, команда route выводит справку. Рассмотрим некоторые примеры команды route в командной строке Windows:
Чтобы вывести на экран все содержимое таблицы IP-маршрутизации, введите команду: route print;
Чтобы вывести на экран маршруты из таблицы IP-маршрутизации, которые начинаются с 10., введите команду: route print 10.*;
Чтобы добавить маршрут по умолчанию с адресом стандартного шлюза 192.168.12.1, введите команду: route add 0.0.0.0 mask 0.0.0.0 192.168.12.1;
Чтобы добавить маршрут к конечной точке 10.41.0.0 с маской подсети 255.255.0.0 и следующим адресом перехода 10.27.0.1, введите команду: route add 10.41.0.0 mask 255.255.0.0 10.27.0.1;