Что такое микроскопия в биологии

МИКРОСКОПИЯ

микроскопи́я, исследования невидимых невооружённым глазом объектов при помощи микроскопа. Различают световую М., основанную на использовании световых лучей, и электронную М., где вместо световых лучей применяют поток электронов (см. Электронный микроскоп). Световая М. подразделяется на обычную, фазово-контрастную, аноптральную, интерференционную, поляризационную, люминесцентную, ультрафиолетовую (см. Микроскоп). Непосредственной М. в световом микроскопе предшествует установление освещения (см. Микроскопическая техника).

В биологических исследованиях производят М. как живых, так и убитых микрообъектов. Исследование живых бактерий, простейших, клеток макроорганизма проводят в проходящем и отражённом свете. В первом случае изучают прозрачные объекты, приготовляя так называемые «влажные» препараты или выращивая микроколонии бактерий на тонком слое питательного агара. Примерами «влажного» препарата служат раздавленная капля и висячая капля. Более чёткие результаты прижизненного наблюдения получают при выращивании микробов в Ш-образной камере Пешкова или масляной камере Фонбрюна. За микрокультурой можно вести непрерывное наблюдение, используя вместо обычного столика нагревательный или специальные инвертированные микроскопы (типа МБИ-12 и МБИ-13) с термостатом и кинокамерами. В отражённом свете исследуют непрозрачные объекты. Для повышения контрастности микрообъектов используют косое освещение, аноптральные объективы, темнопольные и фазово-контрастные устройства. Для получения дополнительных сведений о толщине, показателях преломления и двойного лучепреломления, содержании сухой массы в клетках, светопропускаемости и других физических величинах объекта используют интерференционно-поляризационную М. Прижизненное флюорохромирование микроорганизмов сильно разбавленными растворами красителей акридинового ряда позволяет производить наблюдения за физиологией клеток с помощью люминесцентного микроскопа, а заключение бактерий в специальную камеру с инертным газом — исследовать живые клетки при помощи электронной М. Чаще микрообъекты микроскопируют в неживом состоянии, изготовляя препараты или срезы. При использовании светлопольной М. препараты в виде тонкого мазка или среза окрашивают растворами специальных красителей. Для иммунофлюоресцентного исследования препараты обрабатывают сыворотками, мечеными флюорохромами.

Для электронной М. биологические материалы предварительно контрастируют веществами, интенсивно рассеивающими электроны. Для контрастирования в процессе фиксации липидов и белков используют четырёхокись осмия, для фосфолипидов — перманганат калия, для соединений, содержащих углеводы, — рутений красный. В момент фиксации и обезвоживания препараты окрашивают также уранилацетатом и фосфорновольфрамовой кислотой. Эффективнее контрастировать материал после изготовления Ультратонких срезов. Для изучения тонкой структуры частиц (но не тонких срезов материала) используют также негативное окрашивание (водным раствором фосфорновольфрамового натрия или урановой соли муравьиной кислоты), создающее вокруг объекта тёмный фон. Для контрастирования объектов их напыляют тяжёлым металлом или готовят из него реплики (отпечатки). В случае иммунохимического исследования на уровне электронной М. объект предварительно обрабатывают антителами, конъюгированными с ферритином, диазофенилмеркуриацетатом, пероксидазой или йодом.

Микроскопия вирусов (вирусоскопия). Морфологию вирусов изучают следующими методами электронной микроскопии: ультратонких срезов, негативного контрастирования и оттенения металлами. Метод ультратонких срезов позволяет установить строение вируса на срезе, тип его нуклеиновой кислоты, способ проникновения в клетку и выхода из неё, а также место размножения в клетке; Метод негативного контрастирования даёт высокое разрешение и позволяет изучить форму и размеры вирионов, структурную организацию их оболочек. Используя антитела, определяют локализацию антигенных детерминант в структуре вируса. Для негативного контрастирования используют очищенные и концентрированные препараты вирусов. Из контрастирующих веществ чаще применяют соли фосфорновольфрамовой и кремнийвольфрамовой кислот. Метод оттенения металлами (золотом, платиной и др.), испарением их в вакууме позволяет установить размеры и форму вирусов, используя длину полученной тени и угол, под которым велось оттенение. Существенный недостаток метода оттенения — значительно меньшее разрешение деталей структуры вируса, чем при методе негативного контрастирования.

Под термином «вирусоскопия» всё чаще стали понимать совокупность методов, с помощью которых выявляют вирусов в биологическом материале и изучают их морфологию. См. также Вирусологические исследования.

Литература:
Ромейс Б., Микроскопическая техника, пер. с нем., М., 1954;
Уикли Б. С., Электронная микроскопия для начинающих, пер. с англ., М., 1975;
Киселев Н. А., Электронная микроскопия биологических макромолекул, М., 1965.

Полезное

Смотреть что такое «МИКРОСКОПИЯ» в других словарях:

микроскопия — микроскопия … Орфографический словарь-справочник

МИКРОСКОПИЯ — (этим. см. микроскоп). Применение увеличительных стекол и учение о том. Словарь иностранных слов, вошедших в состав русского языка. Чудинов А.Н., 1910. МИКРОСКОПИЯ этимологию см. микроскоп. Применение увеличительных стекол и учение о том.… … Словарь иностранных слов русского языка

микроскопия — и, ж. microscopie f., нем. Mikroskopie <гр. Практическая дисциплина об устройстве и употреблении микроскопа; изучение чего л. с помощью микроскопа. БАС 1. И в эти минуты он не мог не вспомнить доктора Швецова, писавшего ему из Германии, что… … Исторический словарь галлицизмов русского языка

МИКРОСКОПИЯ — общее название методов наблюдения в микроскоп неразличимых человеческим глазом объектов. Подробнее см. в ст. (см. МИКРОСКОП). Физический энциклопедический словарь. М.: Советская энциклопедия. Главный редактор А. М. Прохоров. 1983 … Физическая энциклопедия

МИКРОСКОПИЯ — оптическая совокупность методов наблюдения микрообъектов с помощью различных оптических микроскопов. Эти методы существенно зависят от типа объектива микроскопа, вспомогательных приспособлений к нему, вида микрообъекта и способа подготовки его… … Большой Энциклопедический словарь

МИКРОСКОПИЯ — МИКРОСКОПИЯ, микроскопии, мн. нет, жен. (спец.). Практическая дисциплина об устройстве и употреблении микроскопа. Толковый словарь Ушакова. Д.Н. Ушаков. 1935 1940 … Толковый словарь Ушакова

микроскопия — совокупность методов изучения малых объектов с помощью микроскопов. К традиционным видам М. относятся–люминесцентная М. – основана на явлении фотолюминесценции, возникающей при окраске препаратов специальными люминесцентными красителями;… … Словарь микробиологии

микроскопия — сущ., кол во синонимов: 2 • макромикроскопия (1) • ультрамикроскопия (1) Словарь синонимов ASIS. В.Н. Тришин. 2013 … Словарь синонимов

микроскопия — Общее название методов наблюдения в микроскоп (и применяемых при этом спец. методов освещения) мелких и мельчайших объектов и деталей их строения. [http://metaltrade.ru/abc/a.htm] Тематики металлургия в целом EN microscopy … Справочник технического переводчика

Микроскопия — – совокупность оптических методов наблюдения микрообъектов с помощью оптических микроскопов. [Терминологический словарь по бетону и железобетону. ФГУП «НИЦ «Строительство» НИИЖБ им. А. А. Гвоздева, Москва, 2007 г. 110 стр.] Рубрика термина … Энциклопедия терминов, определений и пояснений строительных материалов

Микроскопия — В Википедии … Википедия

Источник

Микроскопия

Что такое микроскопия в биологии. Смотреть фото Что такое микроскопия в биологии. Смотреть картинку Что такое микроскопия в биологии. Картинка про Что такое микроскопия в биологии. Фото Что такое микроскопия в биологии

Клетки крови: эритроцит и лейкоцит

Что такое микроскопия в биологии. Смотреть фото Что такое микроскопия в биологии. Смотреть картинку Что такое микроскопия в биологии. Картинка про Что такое микроскопия в биологии. Фото Что такое микроскопия в биологии

Микроскопия (лат. μΙκροσ — мелкий, маленький и др.-греч. μΙκροσ σκοποσ — вижу) — способ изучения малых объектов с помощью микроскопа. Микроскопия позволяет получить изображения тонкой структуры объектов (качество зависит от разрешающей способности микроскопа).

Содержание

История

Первый микроскоп был создан лишь в 1595 году Захариусом Йансеном. [1] Современные микроскопы отличаются высокой степенью специализации. Существуют металлографические, биологические, полярографические, а также универсальные микроскопы, общего назначения.

Виды микроскопии

Что такое микроскопия в биологии. Смотреть фото Что такое микроскопия в биологии. Смотреть картинку Что такое микроскопия в биологии. Картинка про Что такое микроскопия в биологии. Фото Что такое микроскопия в биологии

Что такое микроскопия в биологии. Смотреть фото Что такое микроскопия в биологии. Смотреть картинку Что такое микроскопия в биологии. Картинка про Что такое микроскопия в биологии. Фото Что такое микроскопия в биологии

Существует несколько видов микроскопии: оптическая микроскопия, электронная микроскопия, рентгеновская микроскопия (рентгеновская лазерная микроскопия), отличающиеся конструктивными элементами, деталями, узлами самих микроскопов, что обеспечивает наблюдение в разных диапазонах спектра электромагнитных лучей.

Микроскопия в зависимости от микроскопов разделяется как:

Виды микроскопов

Для исследования объектов разного типа, и в зависимости от требуемой величины оптического разрешения и других требований, созданы разные микроскопы:

Разрешающая способность

Оптическая микроскопия

Что такое микроскопия в биологии. Смотреть фото Что такое микроскопия в биологии. Смотреть картинку Что такое микроскопия в биологии. Картинка про Что такое микроскопия в биологии. Фото Что такое микроскопия в биологии

Человеческий глаз представляет собой естественную оптическую систему, характеризующуюся определённым разрешением, т. е. наименьшим расстоянием между элементами наблюдаемого объекта (воспринимаемыми как точки или линии), при котором они ещё могут быть отличены один от другого. Для нормального глаза при удалении от объекта на т. н. расстояние наилучшего видения (D = 250 мм), среднестатистическое нормальное разрешения составляет 0,176 мм. Размеры микроорганизмов, большинства растительных и животных клеток, мелких кристаллов, деталей микроструктуры металлов и сплавов и т. п. значительно меньше этой величины. Для наблюдения и изучения подобных объектов и предназначены оптичские микроскопы различных типов.

Немецкие ученые Штефан Хелль в 2006 году Stefan Hell и Мариано Босси Mariano Bossi из Института биофизической химии разработали микроскоп под названием Флюоресцентный наноскоп с разрешением в 1-10 нм и получать высококачественные трехмерные 3D изображения. Вся суть заклюсается в том, что здесь впервые применён принцип комбинированой микроскопии, когда опорное освещение по принципу лазерной рентгеноскопии позволяет получить оптическое изображение с выходными длинами волн оптического микроскопа, но обеспечивать разрешение микроскопии в диапазоне 1-10 нм.

Электронная микроскопия

Что такое микроскопия в биологии. Смотреть фото Что такое микроскопия в биологии. Смотреть картинку Что такое микроскопия в биологии. Картинка про Что такое микроскопия в биологии. Фото Что такое микроскопия в биологии

С изобретением электронного микроскопа — 1930-е годы — начало создания современной науки об исследовании и изучении микромира под названием микрография или микроскопия.

Рентгеновская микроскопия

История рентгеновской микроскопии

До создания рентгеновских микроскопов работали с оптическими приборами, использующих лучи видимого света, так как и глаз работает в оптическом диапазоне длин волн. Соответственно, оптические микроскопы не могли иметь разрешения менее полупериода волны опорного излучения (для видимого диапазона длина волн 0,4—0,7 мкм, или 400—700 нм) c возможным максимальным увеличением в 2000 раз. [3]

Идея просвечивающего электронного микроскопа состояла в замене опорного электромагнитного излучения на электронный пучок. Известно, что для увеличения разрешения микроскопов, использующих Электромагнитное излучение, необходимо уменьшение длины волны электромагнитного излучения до ультрафиолетового диапазон вплоть до рентгеновского (длина волны сопоставима с межатомными расстояниями в веществе) и основная трудность состоит в фокусировке ультрафиолетовых и, тем более, рентгеновских лучей. Последние вообще не поддаются фокусировке.

Возможности рентгеновской микроскопии

Что такое микроскопия в биологии. Смотреть фото Что такое микроскопия в биологии. Смотреть картинку Что такое микроскопия в биологии. Картинка про Что такое микроскопия в биологии. Фото Что такое микроскопия в биологии

Голова мухи (фото сделано с помощью электронного микроскопа )

Проекционные рентгеновские микроскопы

Что такое микроскопия в биологии. Смотреть фото Что такое микроскопия в биологии. Смотреть картинку Что такое микроскопия в биологии. Картинка про Что такое микроскопия в биологии. Фото Что такое микроскопия в биологии

Схема Рентгеновского микроскопа проекционного

Проекционные рентгеновские микроскопы представляют собой камеру, в противоположных концах которой располагаются источник излучения и регистрирующее устройство. Для получения чёткого изображения необходимо, чтобы угловая апертура источника была как можно меньше.

Увеличение (М) в методе рентгеновской проекционной микроскопии определяется отношением расстояний от источника рентгеновского излучения до детектора (b) к расстоянию от источника до объекта (а):

В микроскопах такого типа до недавнего времени не использовались дополнительные оптические приборы. Основным способом получить максимальное увеличение является размещение объекта на минимально возможном расстоянии от источника рентгеновского излучения. Для этого фокус трубки располагается непосредственно на окне рентгеновской трубки либо на вершине иглы анода, помещенной вблизи окна трубки. В последнее время ведутся разработки микроскопов, использующих зонные пластинки Френеля для фокусировки изображения. Такие микроскопы имеют разрешающую способность до 30 нанометров.

Новое направление в рентгеноскопии

Рентгеновская оптика преломления

Что такое микроскопия в биологии. Смотреть фото Что такое микроскопия в биологии. Смотреть картинку Что такое микроскопия в биологии. Картинка про Что такое микроскопия в биологии. Фото Что такое микроскопия в биологии

Планарные параболические линзы

Как известно, показатель преломления Х-лучей мало отличается от единицы. Рентгеновская оптика являлась предметом постоянных оценок и рассуждений. Получение и появление составных рентгеновских линз и призм — начало новых шагов во всём мире в деле создания новых оптических устойств микроскопов, телескопов с использованием диапазона спектра длин волн жёстких Х-лучей, способных их преломлять и фокусировать с разрешением 5-10нм [5]

Получение изображений в реальном и фурье-пространствах

Что такое микроскопия в биологии. Смотреть фото Что такое микроскопия в биологии. Смотреть картинку Что такое микроскопия в биологии. Картинка про Что такое микроскопия в биологии. Фото Что такое микроскопия в биологии

Рис.1,Применение планарных линз на примере прохождения Х-лучей в кристаллах

Что такое микроскопия в биологии. Смотреть фото Что такое микроскопия в биологии. Смотреть картинку Что такое микроскопия в биологии. Картинка про Что такое микроскопия в биологии. Фото Что такое микроскопия в биологии

Рис.2,Cхема флюоресцентного наноскопа с использованием Х-линзы, преломляющей Х-лучи

Для получения рентгеновских изображений в действительном пространстве сейчас в основном применяют преломляющие линзы, рассмотренные выше (Рис.1,2), с параболическим аксиально симметричным профилем. [7] Имеются и другие Х-линзы с другими рассчётными профилями. В настоящее время опережающее развитие получает безлинзовая компьютерная микроскопия в томографии, где происходит форимрование трёхмерных изображенй структуры объектов (3D). Сейчас созданы нанотомографы с разрешением 200нм. [8] Для повышения разрешения трехмерных изображений величиной в 25-50нм предполагается применение в топографии методов преобразований сигналов изображений нанообъектов — спектров дифракции в фурье-пространстве (с последующими преобразованиями сигналов — дискретизациия, калибровка, восстановление их при АЦП и т.д. с выдачей в стерео пространстве изображений на экране монитора). Флюоресцентная рентгеноскопия с разрешением 5-10нм отличается тем, что в разных участках объекта периодически создаются видимые раздельно флуоресцирующие молекулы и наночастицы. Лазер (рентгеновский) обеспечивает такое их возбуждение, которое достаточно не только для регистрации их неперекрывающихся изображений, но и для обесцвечивания уже зарегистрированных флуоресцирующих молекул. При этом десятки тысяч кадров с зарегистрированными изображениями одиночных молекул и наночастиц (в виде пятен диаметром порядка длины волны света флуоресцении, умноженной на увеличение микроскопа), обрабатываются на компьютере для поиска координат центров пятен и создания изображения объекта по миллионам вычисленных координат центров пятен, соответствующих координатам индивидуальных флуоресцирующих молекул и наночастиц. При этом применяемые две цифровые, размещённые под углом, с высоким разрешением камеры, улавливая светящиеся окрашенные в RGB цвета микрочастицы (молекулы, атомы) при формировании стереоизображений окрашивают их в нужный цвет. [9]

Источник

12 методов в картинках: микроскопия

Авторы
Редакторы

Один из старейших научных приборов — микроскоп — появился практически одновременно с наукой в ее современном виде. Этот канонический инструмент биолога более 400 лет был важнейшим средством для познания живого, и дал львиную долю наших знаний об устройстве жизни. Все это время эволюция микроскопа продолжалась, расширяя возможности увидеть неразличимое глазом.

Что такое микроскопия в биологии. Смотреть фото Что такое микроскопия в биологии. Смотреть картинку Что такое микроскопия в биологии. Картинка про Что такое микроскопия в биологии. Фото Что такое микроскопия в биологии

12 биологических методов в картинках

Что такое микроскопия в биологии. Смотреть фото Что такое микроскопия в биологии. Смотреть картинку Что такое микроскопия в биологии. Картинка про Что такое микроскопия в биологии. Фото Что такое микроскопия в биологии

Генеральный партнер цикла — компания «Диаэм»: крупнейший поставщик оборудования, реагентов и расходных материалов для биологических исследований и производств.

Одна из главных миссий «Биомолекулы» — докопаться до самых корней. Мы не просто рассказываем, какие новые факты обнаружили исследователи — мы говорим о том, как они их обнаружили, стараемся объяснить принципы биологических методик. Как вытащить ген из одного организма и вставить в другой? Как проследить в огромной клетке за судьбой нескольких крошечных молекул? Как возбудить одну крохотную группу нейронов в огромном мозге?

И вот мы решили рассказать о лабораторных методах более системно, собрать воедино в одной рубрике самые главные, самые современные биологические методики. Чтоб было интереснее и нагляднее, мы густо проиллюстрировали статьи и даже кое-где добавили анимации. Мы хотим, чтобы статьи новой рубрики были интересны и понятны даже случайному прохожему. И с другой стороны — чтобы они были так подробны, что даже профессионал мог бы обнаружить в них что-то новое. Мы собрали методики в 12 больших групп и собираемся сделать на их основе биометодический календарь. Ждите обновлений!

История микроскопии

Что такое микроскопия в биологии. Смотреть фото Что такое микроскопия в биологии. Смотреть картинку Что такое микроскопия в биологии. Картинка про Что такое микроскопия в биологии. Фото Что такое микроскопия в биологии

На пороге микромира

Собирающие (увеличивающие) линзы были известны с XI века, и очки распространились по Европе уже в XIV веке. Традиционно изобретение первого составного микроскопа приписывают отцу и сыну — Хансу и Захарию Янсенам в 1595 году (рис. 1). Этот первый микроскоп мог увеличивать изображение всего в 3–9 раз. Есть версия, что первый микроскоп создал Корнелиус Дреббель. Среди изобретателей первых микроскопов был и Галилей, создавший свой микроскоп в 1609 году. Так или иначе, ни один из изобретателей не оставил подробных описаний микромира. Микроскопия как наука началась с Роберта Гука, который в 1665 году издал Micrographia — книгу, в которой подробно описывались устройство микроскопа, основы оптики и первые наблюдения за биологическими объектами, иллюстрированные подробными рисунками [1]. Микроскоп Гука (рис. 2) состоял из трех линз и источника света — эта основа сохраняется и в современной микроскопии. Однако достичь больших увеличений удалось с помощью более простой конструкции — Антони ван Левенгук использовал, казалось бы, примитивный микроскоп всего с одной линзой (рис. 2). Однако благодаря высочайшему качеству этой линзы ему удалось достичь 200-кратного увеличения и описать клетки простейших и даже крупные бактерии. Использование всего одной линзы не создавало оптических аберраций, которые только множились при конструировании более сложной оптической системы.

Что такое микроскопия в биологии. Смотреть фото Что такое микроскопия в биологии. Смотреть картинку Что такое микроскопия в биологии. Картинка про Что такое микроскопия в биологии. Фото Что такое микроскопия в биологии

Генеральный партнер цикла «12 методов» — компания «Диаэм»

«Диаэм» — крупнейшая российская компания, специализирующаяся на поставке оборудования и реагентов ведущих мировых производителей в области микроскопии: от микроскопов начального уровня до исследовательских, конфокальных и мультифотонных систем, а также автоматизированных биоимиджинговых систем, способных поддерживать жизнеспособность клеток при постановке длительных экспериментов.

Что такое микроскопия в биологии. Смотреть фото Что такое микроскопия в биологии. Смотреть картинку Что такое микроскопия в биологии. Картинка про Что такое микроскопия в биологии. Фото Что такое микроскопия в биологии

Материал предоставлен партнёром — компанией «Диаэм»

Что такое микроскопия в биологии. Смотреть фото Что такое микроскопия в биологии. Смотреть картинку Что такое микроскопия в биологии. Картинка про Что такое микроскопия в биологии. Фото Что такое микроскопия в биологии

Рисунок 1. Микроскопия: этапы большого пути. 1590 г. — Захарий и Ханс Янсены создают первый микроскоп. 1665 г. — первое издание книги Роберта Гука Micrographia: описание и иллюстрации первых микроскопических исследований. 1674 г. — Антони ван Левенгук с помощью своего микроскопа описывает инфузории, а в дальнейшем — бактерии, сперматозоиды, вакуоли внутри клетки и т.п. 1858 г. — Йозеф фон Герлах разрабатывает окрашивание кармином — одной из первых гистологических красок. 1878 г. — Эрнст Аббе выводит формулу Аббе, позволяющую вычислить максимальное разрешение, исходя из длины волны. 1911 г. — Оскар Хеймштадт изобретает первый флуоресцентный микроскоп. 1929 г. — Филипп Эллингер и Август Хирт конструируют эпифлуоресцентный микроскоп, в котором эффективно отфильтровывалось излучение от источника света. 1932 г. — Фриц Цернике изобретает фазовый контраст, позволяя рассматривать живые неокрашенные объекты с большим контрастом. 1933 г. — Эрнст Руска совместно с Максом Кноллем создает первый электронный микроскоп. В 1939 году с его помощью выпустили первый коммерческий электронный микроскоп. 1934 г. — Джон Маррак получает первый конъюгат антитела с красителем. Первое практическое использование Альбертом Кунсом, усовершенствовавшим технику конъюгацией с флуоресцентной меткой. 1942 г. — Эрнст Руска создает сканирующий электронный микроскоп. 1962 г. — первое описание GFP Осамой Симомурой. 1967 г. — первое использование конфокальной микроскопии Моймиром Петраном, Дэвидом Эггером и Робертом Галамбосом. 1969 и 1971 гг. — первое описание конфокальной лазерной микроскопии. 1981 г. — Герд Бинниг и Генрих Рорер создают первый сканирующий туннельный микроскоп. 1986 г. — Герд Бинниг, Келвин Куэйт и Кристофер Гербер изобретают атомно-силовую микроскопию. 1990 г. — Винфрид Денки и Джеймс Стиклер разрабатывают первый двухфотонный микроскоп. 1994 г. — Штефан Хелл: суперразрешающая электронная микроскопия на основе подавления спонтанного испускания (STED). 2006 г. — изобретение PALM/STROM-микроскопии. Чтобы увидеть рисунок в полном размере, нажмите на него.

Что такое микроскопия в биологии. Смотреть фото Что такое микроскопия в биологии. Смотреть картинку Что такое микроскопия в биологии. Картинка про Что такое микроскопия в биологии. Фото Что такое микроскопия в биологии

Рисунок 2а. Первые «ласточки». Микроскоп Гука (реконструкция).

Источник

Методы микроскопии

Определение понятия

Микроскопические методы исследования – это способы изучения очень мелких, неразличимых невооруженным глазом объектов с помощью микроскопов. Широко применяются в бактериологических, гистологических, цитологических и других исследованиях.

Микроскоп – это оптический прибор, имеющий как минимум двухступенчатое увеличение. И одно из них принадлежит окуляру, который играет роль лупы. Только в отличие от бытовой лупы, окуляр имеет постоянное увеличение, его положение в микроскопе определено и жестко закреплено стандартом (высота окуляра).

Любой оптический микроскоп имеет базовые узлы, функциональное назначение которых не меняется от типа, класса прибора или страны производителя. Разница только в конструкторском и технологическом решениях, предложенных специалистами фирм-разработчиков, а также уровне мирового научно-технического прогресса. И как бы микроскоп не назывался – световой, цифровой, видеомикроскоп, фотомикроскоп, лазерный сканирующий микроскоп, анализатор изображения – в его основе будет базовый световой микроскоп, принцип которого был разработан еще Левингуком, Ньютоном, Карл Цейсом, Эрнстом Аббе.

Микроскоп – это оптико-механо-электрический прибор, объединяющий в себе три функциональные части:
· функция воспроизводящей системы – воспроизвести (создать, сформировать) изображение объекта таким образом, чтобы оно как можно точнее передавало детали объекта с соответствующим разрешением, увеличением, контрастом и цветопередачей;
· функция визуализирующей системы – передать изображение объекта, созданное воспроизводящей системой микроскопа, таким образом, чтобы оно с небольшим дополнительным увеличением (или без него) было видно достаточно резко на сетчатке глаза, фотопленке или пластинке, на экране телевизора или монитора компьютера;
· функция осветительной системы – создать световой поток, позволяющий осветить объект таким образом, чтобы воспроизводящая система микроскопа предельно точно могла выполнить свою основную функцию. При этом совместная работа обоих систем должна обеспечивать визуализацию изображения с использованием физико-химических свойств объекта.

Важнейшей характеристикой каждого объектива микроскопа является его разрешающая способность. Разрешающей способностью называется расстояние между двумя точками, при котором они видны раздельно (т.е. не сливаются в одну).

Для полного использования разрешающей способности иммерсионного объектива необходимо выполнять следующие основные правила:
1) Конденсор осветительного аппарата должен быть поднят до отказа (до уровня предметного столика).
2) Диафрагма конденсора полностью открыта.

Во всех без исключения случаях работа ведется с применением встроенной подсветки или плоского зеркала, так как конденсор рассчитан на работу с параллельными пучками света.
Одной из важных характеристик объектива является его свободное рабочее расстояние, т.е. расстояние между верхней поверхностью препарата и нижней поверхностью фронтальной линзы объектива при наведенном на фокус объективе. Эти расстояния следующие:
для объектива с увеличением 10х – 0,25 мм;
для объектива с увеличением 40х – 0,65 мм;
для объектива с увеличением 100х – 1,25 мм.
Знание этих расстояний необходимо для того, чтобы быстро сфокусировать объектив на препарат.

Порядок работы со световыми микроскопами
· Проверить состояние осветительного аппарата: поднять конденсор, открыть его диафрагму, включить питание и для установки интенсивности освещения медленно повернуть ручку настройки яркости, в случае отсутствия встроенной подсветки, поставить плоское зеркало.
· Поместить на столик микроскопа исследуемый препарат и установить в фокусе сухой объектив (10х) на расстояние несколько меньше свободного рабочего расстояния.
· Глядя в окуляр, произвести предварительную установку освещения с помощью ручки настройки яркости (или вращая зеркалом).
· Медленно поднимая тубус макровинтом, добиться резкого изображения препарата.
· Поставив сухой (40х) или иммерсионный (100х) объектив, опускать тубус микроскопа под контролем глаза, глядя сбоку. Опустить объектив на расстояние меньше свободного рабочего и, глядя в окуляр, макровинтом медленно поднимать тубус до тех пор, пока не появится мелькание препарата. Точная установка достигается с помощью микровинта. Не следует делать микровинтом более половины оборота в одну или другую сторону.

Микроскопия неокрашенных объектов
При работе с нативным материалом необходимо соблюдать два основных принципа: не загрязнить исследуемый объект микроорганизмами, не заразить себя и окружающую среду. При микроскопии необходимо помнить, что рассматривание неокрашенного препарата возможно только с ограниченным освещением, путем опускания конденсора или уменьшением отверстия ирис-диафрагмы. Для микроскопии неокрашенных объектов используется окуляр 10х и объектив 10х.
При освещении с помощью встроенной подсветки осветителя или плоского зеркала ирис-диафрагма частично закрыта, конденсор опущен. С помощью макровинта устанавливается поле зрения и проводится обзор препарата. С целью обнаружения объекта все нативные (неокрашенные) препараты просматривают под малым увеличением с помощью макровинта. Для лучшего рассмотрения объекта или его отдельных фрагментов используется сухой объектив с увеличением 40х и освещенность, с помощью поднятия конденсора и открытия ирис-диафрагмы под контролем глаза.

Микроскопия окрашенных объектов
При микроскопии окрашенного препарата необходимо помнить, что рассматривание возможно только при полном освещении. Для микроскопии окрашенных объектов используется окуляр 10х и объектив 10х.
Ирис-диафрагма открыта, конденсор поднят. С помощью макровинта устанавливается поле зрения и проводится обзор препарата. Достигается максимальное освещение препарата. При малом увеличении делается обзор препарата для обнаружения четко выраженных полей зрения. Изучение препарата проводится под большим увеличением с применением сухой системы объектив 40х. Для микроскопии окрашенных препаратов биологической жидкости, мокроты, биологического материала применяется иммерсионная система объектив 100х с нанесением на предметное стекло иммерсионного масла.

Общий метод: наблюдение. Частный метод: микроскопирование.

Christine E. Farrar, Zac H. Forsman, Ruth D. Gates, Jo-Ann C. Leong, and Robert J. Toonen, Hawai’i Institute of Marine Biology at the University of Hawai’i, Manoa

No dyes or digital software produced the brilliant color of these corals—the glory is all their own. Fluorescent molecules, innate to the corals and to the red algae that live inside and nourish them, shine like Christmas lights under different wavelengths of light emitted by a confocal microscope.

When she saw the corals under the lens for the first time, «my jaw just dropped,» says Ruth Gates, a coral biologist at the University of Hawai’i, Manoa, and the narrator of the video. «Most people think corals are inanimate rocks,» she says. «We showcase how beautiful and dynamic they are as animals.» In the video, which compiles the images into three-dimensional, time-lapse animations, corals extend and retract their glowing tentacles. Tiny creatures crawl over the corals, all part of a complex and threatened ecosystem. In the future, Gates says, it might be possible to use confocal microscopy to classify different coral species or diagnose coral disease by their fluorescent patterns. Prior to applying this technique, she says, «that was not even a facet in our thinking about coral biology.»

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *