Что такое модель виды моделей
Понятие модели, виды моделей
Дата добавления: 2015-06-12 ; просмотров: 7621 ; Нарушение авторских прав
Примеры лекций и практик
Курс “Компьютерное моделирование”
Доц.Богданова М.В.
Уважаемые студенты!
Вашему вниманию предлагается курс лекций и
Содержание практических занятий, после изучения
Которых Вам будет необходимо сдать зачет, содер жащий 1 теоретический вопрос из лекций и 1 задача
Из практического курса.
Удачи Вам в изучении данного предмета!
Понятие модели, виды моделей
Модель – схематическое представление того или иного предмета, с помощью выбранных средств моделирования.
Модель отражает основную структуру предмета и его свойства, существует большое количество классификаций моделей.
Модель – абстрактный образ объекта или явления и отношений между отдельными частями объекта или явления.
Любая модель это некоторая абстракция, звено в цепочке познания от опыта к абстракции, к осмыслению. Когда осмыслили снова опыту, к практике.
Процесс создания модели называется моделированием.
Существует несколько распространенных видов классификаций моделей определяющихся следующими принципами:
1) областью использования (учебные модели, опытные модели, научно-технические модели, игровые модели);
2) с учетом моделью временного фактора (статические и динамические модели);
3) отрасль знаний (экономика, история, биология и др.);
4) способ представления модели (материальные и абстрактные модели).
Учебные модели используются в процессе обучения – это обучающие программы, различные тренажеры, наглядные пособия.
Опытные модели – уменьшенные или увеличенные копии объекта, используемые для подробного исследования объекта и прогнозирования его будущих характеристик. Например: модель самолета, которая подвергается воздействию в аэродинамической трубе.
Научно-технические модели созданы для исследования процессов. К таким моделям можно отнести стенд для проверки работы схем, транзисторов и т. д..
Игровые модели – деловые, спортивные, экономические, военные и т. п. игры.
С помощью этих моделей можно разрешать конфликтные ситуации, оказывать психологическую помощь.
Имитационная модель –не просто отражает реальность с той или иной степенью точности, а имитирует ее.
Статическая модель – это единовременный срез информации по данному объекту.
Динамическая модель представляет собой картину изменения объекта во времени.
Материальные модели всегда имеют реальное воплощение и могут отражать:
1) внешние свойства исходных объектов;
2) внутренние устройства исходных объектов;
3) суть процессов и явлений происходящих с объектами оригинала. (Примеры: скелет, чучело, робот).
Абстрактная модель не имеет естественного воплощения, основу этой модели составляет информация, она делится на мысленную и вербальную.
Мысленная модель возникает в процессе любой созидательной деятельности человека.
Вербальную модель человек использует для передачи своих мыслей другим (слова, разговор).
Информационные модели делятся на образно-знаковые и знаковые модели.
Фотографии, географические карты, диаграммы – это образно-знаковые модели, они учитывают цвет и форму. Их можно разделить на:
1) геометрические (чертеж, план, карта, рисунок) отображающие внешний вид оригинала;
2) структурные модели отображающие строение объектов и связи их параметров (таблица, граф, схема, диаграмма);
3) словесные модели зафиксированные средствами языка;
4) алгоритмическая модель(нумерованный список, блок-схема).
Знаковые модели делятся на:
1) математические модели представленные математическими формулами, отображающие связи различных параметров объекта, системы, процесса;
2) специальные модели представленные на специальных языках (химические формулы, ноты и др.);
3) алгоритмические модели представлены в виде программы записанной на специальном языке программирования.
Имитационное моделирование – это процесс конструирования на ЭВМ сложной реальной системы функционирующей во времени и подстановки экспериментов на этой модели с целью либо понять поведение системы, либо оценить различные стратегии обеспечив функционирование данной системы.
Не нашли то, что искали? Google вам в помощь!
Модель
Построение и исследование моделей, то есть моделирование, облегчает изучение имеющихся в реальном устройстве (процессе, …) свойств и закономерностей. Применяют для нужд познания (созерцания, анализа и синтеза).
Моделирование является обязательной частью исследований и разработок, неотъемлемой частью нашей жизни, поскольку сложность любого материального объекта и окружающего его мира бесконечна вследствие неисчерпаемости материи и форм её взаимодействия внутри себя и с внешней средой.
Одни и те же устройства, процессы, явления и т. д. (далее — «системы») могут иметь много разных видов моделей. Как следствие, существует много названий моделей, большинство из которых отражает решение некоторой конкретной задачи. Ниже приведена классификация и дана характеристика наиболее общих видов моделей.
Содержание
Требования к моделям
Моделирование всегда предполагает принятие допущений той или иной степени важности. При этом должны удовлетворяться следующие требования к моделям:
Выбор модели и обеспечение точности моделирования считается одной из самых важных задач моделирования.
Точность моделей
Погрешности моделирования вызываются как объективными причинами, связанными с упрощением реальных систем, так и субъективными, обусловленными недостатком знаний и навыков, особенностями характера того или иного человека. Погрешности можно предотвратить, компенсировать или учесть. И всегда обязательна оценка правильности получаемых результатов. В технике быструю оценку точности модели часто проводят следующими способами:
Известно, что посредством грубых измерений, использования контрольно-измерительных приборов с низкой точностью или приближенных исходных данных невозможно получить точные результаты. С другой стороны, бессмысленно вести, например, расчет с точностью до грамма, если результат потом нужно округлять (скажем, указывать в формуляре) с точностью до ста грамм, или же определять среднюю величину точнее составляющих её значений, и т. д. Поэтому важно помнить о следующем:
Основные виды моделей
По способу отображения действительности различают три основных вида моделей — эвристические, натурные и математические.
Эвристические модели
Эвристические модели, как правило, представляют собой образы, рисуемые в воображении человека. Их описание ведется словами естественного языка (например, вербальная информационная модель) и, обычно, неоднозначно и субъективно. Эти модели неформализуемы, то есть не описываются формально-логическими и математическими выражениями, хотя и рождаются на основе представления реальных процессов и явлений.
Эвристическое моделирование — основное средство вырваться за рамки обыденного и устоявшегося. Но способность к такому моделированию зависит, прежде всего, от богатства фантазии человека, его опыта и эрудиции. Эвристические модели используют на начальных этапах проектирования или других видов деятельности, когда сведения о разрабатываемой системе ещё скудны. На последующих этапах проектирования эти модели заменяют на более конкретные и точные.
Натурные модели
Отличительной чертой этих моделей является их подобие реальным системам (они материальны), а отличие состоит в размерах, числе и материале элементов и т. п. По принадлежности к предметной области модели подразделяют на следующие:
Физическое моделирование — основа наших знаний и средство проверки наших гипотез и результатов расчетов. Физическая модель позволяет охватить явление или процесс во всём их многообразии, наиболее адекватна и точна, но достаточно дорога, трудоемка и менее универсальна. В том или ином виде с физическими моделями работают на всех этапах проектирования;
Математические модели
Математические модели — формализуемые, то есть представляют собой совокупность взаимосвязанных математических и формально-логических выражений, как правило, отображающих реальные процессы и явления (физические, психические, социальные и т. д.). По форме представления бывают:
Построение математических моделей возможно следующими способами (более подробно — см. Математическая модель):
Математические модели более универсальны и дешевы, позволяют поставить «чистый» эксперимент (то есть в пределах точности модели исследовать влияние какого-то отдельного параметра при постоянстве других), прогнозировать развитие явления или процесса, отыскать способы управления ими. Математические модели — основа построения компьютерных моделей и применения вычислительной техники.
Результаты математического моделирования нуждаются в обязательном сопоставлении с данными физического моделирования — с целью проверки получаемых данных и для уточнения самой модели. С другой стороны, любая формула — это разновидность модели и, следовательно, не является абсолютной истиной, а всего лишь этап на пути её познания.
Промежуточные виды моделей
К промежуточным видам моделей можно отнести:
Существует и другие виды «пограничных» моделей, например, экономико-математическая и т. д.
Выбор типа модели зависит от объема и характера исходной информации о рассматриваемом устройстве и возможностей инженера, исследователя. По возрастанию степени соответствия реальности модели можно расположить в следующий ряд: эвристические (образные) — математические — натурные (экспериментальные).
Уровни моделей
Количество параметров, характеризующих поведение не только реальной системы, но и её модели, очень велико. Для упрощения процесса изучения реальных систем выделяют четыре уровня их моделей, различающиеся количеством и степенью важности учитываемых свойств и параметров. Это — функциональная, принципиальная, структурная и параметрическая модели.
Функциональная модель
Функциональная модель предназначена для изучения особенностей работы (функционирования) системы и её назначения во взаимосвязи с внутренними и внешними элементами.
Функция — самая существенная характеристика любой системы, отражает её предназначение, то, ради чего она была создана. Подобные модели оперируют, прежде всего, с функциональными параметрами. Графическим представлением этих моделей служат блок-схемы. Они отображают порядок действий, направленных на достижение заданных целей (т. н. ‘функциональная схема’). Функциональной моделью является абстрактная модель.
Модель принципа действия
Модель принципа действия (принципиальная модель, концептуальная модель) характеризует самые существенные (принципиальные) связи и свойства реальной системы. Это — основополагающие физические, биологические, химические, социальные и т. п. явления, обеспечивающие функционирование системы, или любые другие принципиальные положения, на которых базируется планируемая деятельность или исследуемый процесс. Стремятся к тому, чтобы количество учитываемых свойств и характеризующих их параметров было небольшим (оставляют наиболее важные), а обозримость модели — максимальной, так чтобы трудоемкость работы с моделью не отвлекала внимание от сущности исследуемых явлений. Как правило, описывающие подобные модели параметры — функциональные, а также физические характеристики процессов и явлений. Принципиальные исходные положения (методы, способы, направления и т. д.) лежат в основе любой деятельности или работы.
Так, принцип действия технической системы — это последовательность выполнения определенных действий, базирующихся на определенных физических явлениях (эффектах), которые обеспечивают требуемое функционирование этой системы. Примеры моделей принципа действия: фундаментальные и прикладные науки (например, принцип построения модели, исходные принципы решения задачи), общественная жизнь (например, принципы отбора кандидатов, оказания помощи), экономика (например, принципы налогообложения, исчисления прибыли), культура (например, художественные принципы).
Работа с моделями принципа действия позволяет определить перспективные направления разработки (например, механика или электротехника) и требования к возможным материалам (твердые или жидкие, металлические или неметаллические, магнитные или немагнитные и т. д.).
Правильный выбор принципиальных основ функционирования предопределяет жизнеспособность и эффективность разрабатываемого решения. Так, сколько бы ни совершенствовали конструкцию самолета с винтомоторным двигателем, он никогда не разовьет сверхзвуковую скорость, не говоря уже о полетах на больших высотах. Только использование другого физического принципа, например, реактивного движения и созданного на его основе реактивного двигателя, позволит преодолеть звуковой барьер.
Например, для технических моделей эти схемы отражают процесс преобразования вещества, как материальной основы устройства, посредством определенных энергетических воздействий с целью реализации потребных функций (функционально-физическая схема). На схеме виды и направления воздействия, например, изображаются стрелками, а объекты воздействия — прямоугольниками.
Структурная модель
Четкого определения структурной модели не существует. Так, под структурной моделью устройства могут подразумевать:
Под структурной моделью процесса обычно подразумевают характеризующую его последовательность и состав стадий и этапов работы, совокупность процедур и привлекаемых технических средств, взаимодействие участников процесса.
Например, — это могут быть упрощенное изображение звеньев механизма в виде стержней, плоских фигур (механика), прямоугольники с линиями со стрелками (теория автоматического управления, блок-схемы алгоритмов), план литературного произведения или законопроекта и т. д. Степень упрощения зависит от полноты исходных данных об исследуемом устройстве и потребной точности результатов. На практике виды структурных схем могут варьироваться от несложных небольших схем (минимальное число частей, простота форм их поверхностей) до близких к чертежу изображений (высокая степень подробности описания, сложность используемых форм поверхностей).
Возможно изображение структурной схемы в масштабе. Такую модель относят к структурно-параметрической. Её примером служит кинематическая схема механизма, на которой размеры упрощенно изображенных звеньев (длины линий-стержней, радиусы колес-окружностей и т. д.) нанесены в масштабе, что позволяет дать численную оценку некоторым исследуемым характеристикам.
Для повышения полноты восприятия на структурных схемах в символьном (буквенном, условными знаками) виде могут указывать параметры, характеризующие свойства отображаемых систем. Исследование таких схем позволяет установить соотношения (функциональные, геометрические и т. п.) между этими параметрами, то есть представить их взаимосвязь в виде равенств f (x1, х2, …) = 0, неравенств f (x1, х2, …) > 0 и в иных выражениях.
Параметрическая модель
Под параметрической моделью понимается математическая модель, позволяющая установить количественную связь между функциональными и вспомогательными параметрами системы. Графической интерпретацией такой модели в технике служит чертеж устройства или его частей с указанием численных значений параметров.
Классификация моделей
По целям исследований
В зависимости от целей исследования выделяют следующие модели:
По особенностям представления
С целью подчеркнуть отличительную особенность модели их подразделяют на простые и сложные, однородные и неоднородные, открытые и закрытые, статические и динамические, вероятностные и детерминированные и т. д. Стоит отметить, что когда говорят, например, о техническом устройстве как простом или сложном, закрытом или открытом и т. п., в действительности подразумевают не само устройство, а возможный вид его модели, таким образом подчеркивая особенность состава или условий работы.
Знание этих особенностей облегчает процесс моделирования, так как позволяет выбрать вид модели, наилучшим образом соответствующей заданным условиям. Этот выбор основывается на выделении в системе существенных и отбрасывании второстепенных факторов и должен подтверждаться исследованиями или предшествующим опытом. Наиболее часто в процессе моделирования ориентируются на создание простой модели, что позволяет сэкономить время и средства на её разработку. Однако повышение точности модели, как правило, связано с ростом её сложности, так как необходимо учитывать большое число факторов и связей. Разумное сочетание простоты и потребной точности и указывает на предпочтительный вид модели.
Понятие модели. Основные понятия. Виды моделей
Онлайн-конференция
«Современная профориентация педагогов
и родителей, перспективы рынка труда
и особенности личности подростка»
Свидетельство и скидка на обучение каждому участнику
Описание презентации по отдельным слайдам:
Описание слайда:
Модели,
классификация
Понятие модели.
Основные понятия.
Виды моделей.
Этапы моделирования
Описание слайда:
Модель — способ замещения реального объекта, используемый для его исследования, когда натуральный эксперимент невозможен, дорог, опасен, долговременен.
Модель вместо исходного объекта используется:
«эксперимент опасен» — при деятельности в агрессивной среде вместо человека лучше использовать его макет;
«дорог» — прежде чем использовать идею в реальной экономике страны, лучше опробовать её на математической или имитационной модели «долговременен» — изучить коррозию — процесс, происходящий десятилетия, — выгоднее и быстрее на модели;
«кратковременен» — изучать детали протекания процесса обработки металлов взрывом лучше на модели, поскольку такой процесс скоротечен во времени;
«протяжен в пространстве» — для изучения космогонических процессов удобны математические модели, поскольку реальные полёты к звёздам (пока) невозможны;
«микроскопичен» — для изучения взаимодействия атомов удобно воспользоваться их моделью;
«невозможен» — часто человек имеет дело с ситуацией, когда объекта нет, он ещё только проектируется.
«неповторим» — это достаточно редкий случай, когда эксперимент повторить нельзя;( исторические процессы)
«ненагляден» — модель позволяет заглянуть в детали процесса, в его промежуточные стадии; (ДВС)
Описание слайда:
Процесс моделирования есть процесс перехода из реальной области в виртуальную (модельную) посредством формализации, далее происходит изучение модели (собственно моделирование) и, наконец, интерпретация результатов как обратный переход из виртуальной области в реальную.
Если требуется уточнение, эти этапы повторяются вновь и вновь: формализация (проектирование), моделирование, интерпретация.
Описание слайда:
Соответствие модели объекту
Вариант 1: соответствие — 100%. Очевидно, что точность решения в этом случае максимальна, а ущерб от применения модели минимален. Но затраты на построение такой модели бесконечно велики.
Вариант 2: соответствие — 0%. Модель совсем не похожа на реальный объект. Очевидно, что точность решения минимальна, а ущерб от применения модели максимален, бесконечен. Но затраты на построение такой модели нулевые.
На практике действуют таким образом: двигаются по шкале точности слева направо, то есть от простых моделей («Модель 1», «Модель 2»…) ко все более сложным («Модель 3», «Модель 4»…). А процесс моделирования имеет циклический спиралевидный характер: если построенная модель не удовлетворяет требованиям точности, то её детализируют, дорабатывают на следующем цикле
Описание слайда:
Алгоритм — это процесс решения задачи путём реализации последовательности шагов.
Модель — совокупность потенциальных свойств объекта.
Математика — наука, предоставляющая возможность исчисления моделей, приводимых к стандартному (каноническому) виду. Наука о нахождении решений аналитических моделей (анализ) средствами формальных преобразований.
Исследование операций — дисциплина, реализующая способы исследования моделей с точки зрения нахождения наилучших управляющих воздействий на модели (синтез). По большей части имеет дело с аналитическими моделями. Помогает принимать решения, используя построенные модели.
Проектирование — процесс создания объекта и его модели;
Моделирование — способ оценки результата проектирования; моделирования без проектирования не существует.
Описание слайда:
Описание слайда:
Модели могут быть:
Феноменологические модели сильно привязаны к конкретному явлению и передаёт внешнее подобие. Изменение ситуации часто приводит к тому, что моделью воспользоваться в новых условиях достаточно сложно.
Абстрактная модель воспроизводит систему с точки зрения её внутреннего устройства, копирует её более точно. У неё больше возможностей, шире класс решаемых задач.
Активные модели взаимодействуют с пользователем, меняют его линию, имеют собственные цели. Активные модели могут самоизменяться.
Пассивные модели могут выдавать ответы только по запросу.
Статические модели описывают явления без развития.
Динамические модели прослеживают поведение систем, поэтому используют в своей записи, например, дифференциальные уравнения, производные от времени.
Дискретные модели изменяют состояние переменных скачком, потому что не имеют детального описания связи причин и следствий, часть процесса скрыта от исследователя.
Непрерывные модели более точны, содержат в себе информацию о деталях перехода.
Детерминированные модели всегда однозначно реагируют на входное воздействие.
Стохастические модели не всегда однозначно реагируют на входное воздействие, присутствует случайный характер выходного сигнала.
Описание слайда:
Распределенные модели характеризуются тем, что параметр принимает разные значения в разных точках объекта.
Модель с сосредоточенными параметрами характеризуется тем, что параметр, описывающий свойство объекта в любых его точках имеет одинаковое значение (может меняться во времени).
Структурная модель – модель копирует структуру объекта, а параметры объекта сосредоточены.
Функциональная модель описывает модель с точки зрения её поведения,
Объектно-ориентированная модель имеет описание каждого объекта отделенное от описания другого объекта.
Приведённая выше классификация является идеальной. Модели сложных систем обычно имеют комплексный вид, используют в своём составе сразу несколько представлений.
. В зависимости от используемого типа модели (алгебраические, дифференциальные, графы и т. д.) на разных этапах её исследования используются различные математические аппараты.
Описание слайда:
Аналитические и имитационные модели
Аналитическое представление подходит лишь для очень простых и сильно идеализированных задач и объектов, которые, как правило, имеют мало общего с реальной (сложной) действительностью, но обладают высокой общностью. Аналитические модели обычно применяют для описания фундаментальных свойств объектов (поэтому ими так широко пользуется теоретическая физика), так как фундамент прост по своей сути. Сложные объекты редко удаётся описать аналитически.
Имитационное моделирование позволяет разлагать большую модель на части (объекты, «кусочки»), которыми можно оперировать по отдельности, создавая другие, более простые или, наоборот, более сложные модели. Таким образом, имитационное моделирование тяготеет к объектно-ориентированному представлению, которое естественным образом описывает объекты, их состояние, поведение, а также взаимодействие между ними. Имитационную модель можно постепенно усложнять и усложнять; аналитический способ этого не допускает или допускает, но с большими ограничениями.