Что такое общая теория относительности

Общая теория относительности: Простое объяснение

Что такое общая теория относительности. Смотреть фото Что такое общая теория относительности. Смотреть картинку Что такое общая теория относительности. Картинка про Что такое общая теория относительности. Фото Что такое общая теория относительности

Что такое общая теория относительности. Смотреть фото Что такое общая теория относительности. Смотреть картинку Что такое общая теория относительности. Картинка про Что такое общая теория относительности. Фото Что такое общая теория относительности

Когда Эйнштейн упомянул о своем желании решить проблему гравитации, ему было сказано две вещи: первое, — что это просто невозможно сделать, а второе заключается в том, что никто не поверит ему, даже если бы он это сделал. В ответ он создал свое величайшее творение — Общую теорию относительности.

Общая теория относительности сделала для гравитации то, что даже Ньютон не смог сделать, — дала ей объяснение, показала закономерность, благодаря которой вещи падают, вращаются на орбите и искажают время. Фактически, создание общей теории относительности связано с противостоянием с Ньютоном и его представлениями о гравитации, которая им описывалась как таинственна сила, сближающая объекты. Хотя по правде говоря, даже сам Ньютон не понимал, как это работает, поскольку сила притяжения действует через пустое пространство, и горько критиковал свою собственную теорию гравитации.

Тем не менее, несмотря на вопросы, которые остались без ответа, формулы Ньютона для гравитации всё еще использовались в течение десятилетий, как основа для универсальных законов физики, чтобы точно предсказывать движения планет и даже отправить людей на Луну. Чтобы понять общую теорию относительности, нам нужно кратко взглянуть на ньютоновскую теорию тяготения и на то, где она не дотягивает.

Что такое общая теория относительности. Смотреть фото Что такое общая теория относительности. Смотреть картинку Что такое общая теория относительности. Картинка про Что такое общая теория относительности. Фото Что такое общая теория относительности

Ньютоновская гравитация была сформулирована главным образом для объяснения двух вещей. Первым был вопрос о том, почему объекты разного веса падают на землю одновременно. Обратите внимание на слово «падают», а не «брошены». Бросание объектов добавляет дополнительную энергию, которую объект не имел бы, если бы он был просто уронен. Например, если бы не сопротивление воздуха, перо и свинцовый шар при падении приземлились бы одновременно. Два камня разных размеров и веса также будут приземляться на землю одновременно.

Другой вопрос, который Ньютон попытался решить, — это орбиты небесных тел, почему Луна вращается вокруг Земли, а Земля — вокруг Солнца. В конечном счете, ответ Ньютона на это заключался в том, что гравитация — это сила, пропорциональная массе объекта. Чем больше масса объекта, тем сильнее его гравитационное притяжение.

Но, как мы уже упоминали ранее, проблема ньютоновской гравитации заключается в её действии на расстоянии. Силы зависят от массы объектов и от расстояния между ними. Проблема с этим в том, что сила не имеет носителя, она действует в пустом пространстве. Также проблема в том, что она нарушает «ограничение скорости» Вселенной: ничто не может двигаться быстрее скорости света. Если объект изменил свое положение во Вселенной, силы притяжения, с которой он действует на другие объекты, мгновенно изменились бы, нарушив это ограничение скорости.

В попытке решить проблему гравитации Эйнштейн впервые придумал Специальную теорию относительности, которая учитывала только объекты, движущиеся по прямой и с постоянной скоростью. Однако она не включала ускорения, и Эйнштейн стремился создать теорию, которая могла бы применяться более широко. Так родился термин Общая теория относительности.

В начале 1900-х Эйнштейн провел мысленный эксперимент. Он смотрел в окно и представлял себе человека, падающего с крыши. Когда человек падал, он чувствовал себя невесомым. Но что если бы этот человек был в падающем лифте? Лифт будет двигаться с той же скоростью, что и человек, который также почувствует себя невесомым.

Именно тогда Эйнштейн понял, что происходит. Вопреки теории Ньютона, не было никакой гравитационной силы, тянущей объекты вниз. Вместо этого пространство вокруг них было изогнуто, подталкивая оба объекта к земле. Оно толкало, а не притягивало, как это считалось в теории притяжения Ньютона. Последствия этого открытия были удивительными. Это означало, что пространство является гибким, его можно складывать и изгибать. Эйнштейн объединил пространство и время в так называемый пространственно-временной континуум.

Что такое общая теория относительности. Смотреть фото Что такое общая теория относительности. Смотреть картинку Что такое общая теория относительности. Картинка про Что такое общая теория относительности. Фото Что такое общая теория относительности

В то время как естественное движение вещей состоит в том, чтобы следовать простейшему пути через пространство-время, масса изгибает окружающее её пространство так, что мы движемся к центрам большей массы. Это и есть сила, которую мы называем гравитацией.

Как это описывает орбиты планет и их лун? Ньютоновская гравитация говорит, что Солнце притягивает нас к себе, но мы не падаем на него, потому что Земля также одновременно движется в сторону по эллиптической орбите. Но согласно общей теории относительности, огромная масса Солнца искажает пространство вокруг себя, и это изогнутое пространство толкает Землю к Солнцу.

Что такое общая теория относительности. Смотреть фото Что такое общая теория относительности. Смотреть картинку Что такое общая теория относительности. Картинка про Что такое общая теория относительности. Фото Что такое общая теория относительности

Ни одно из этих изображений не является точным относительно того, как на самом деле выглядит кривизна пространства-времени — три измерения пространства, обернутые вокруг четвертого измерения (времени), — но наши умы не способны представить, как это будет выглядеть на самом деле. Поскольку мы живем в трех измерениях, мы можем представить себе только трехмерные ситуации.

Откуда мы знаем, что Общая теория относительности работоспособна? Доказательства этого есть во всей Вселенной. Теория не только объясняет нейтронные звезды и аномалии орбиты Меркурия, но и правильно предсказывает черные дыры и способность гравитации сгибать свет. Звездный свет, например, искривляется, когда проходит вблизи Солнца. Еще один интересный момент со светом заключается в том, что когда он отклоняется вокруг более компактных объектов, это приводит к нескольким изображениям этого объекта. Это обычно наблюдаемое явление называется гравитационным линзированием и помогает подтвердить общую относительность.

Знаете ли вы, что время также может быть искажено? Время замедляется ближе к объектам очень большой массы. Например, для тех, кто живет в высоком небоскребе, время течет быстрее, чем для находящихся на земле. Но, эта разница очень мала, разумеется.

Теория относительности также предсказывает, что в момент зарождения нашей Вселенной она была очень горячей и плотной, что в конечном итоге привело к Большому взрыву. С тех пор мы обнаружили, что наша Вселенная расширяется гораздо быстрее, чем предсказывал Эйнштейн.

Как выразился физик-теоретик Джон Уилер ( John Wheeler), «пространство-время говорит материи, как двигаться, а материя говорит пространству-времени, как изгибаться».

Что касается опыта с двумя падающими объектами разной массы, теория относительности говорит, что они упали на пол одновременно, потому что на них не действует сила.

Применений общей теории относительности гораздо больше. Это был один из величайших даров Эйнштейна миру, и он продолжает проходить тестирование. Но это действительно рисует довольно странную картину Вселенной — ту, где червоточины могут существовать, и параллельные линии могут в конечном итоге расходиться. Мы до сих пор всё еще обсуждаем эту теорию. Мы продолжаем использовать слово «гравитация», и мы продолжаем думать с точки зрения ньютоновской гравитации, потому что это более понятно для нашего ума, чем изогнутое пространство-время.

Источник

Что такое Общая теория относительности Эйнштейна?

Общая теория относительности является основным строительным блоком современной физики. Она объясняет гравитацию, основываясь на способности пространства «изгибаться», или, говоря точнее, связывает силу тяжести с изменяющейся геометрией пространства-времени. Альберт Эйнштейн основал «Общую» теорию относительности (ОТО) в 1915 году, через десять лет после создания «специальной» теории, применив универсальную скорость света и предположив, что законы физики остаются неизменными в любой данной системе отсчета. Но так ли сложна ОТО, как может показаться на первый взгляд?

Что такое общая теория относительности. Смотреть фото Что такое общая теория относительности. Смотреть картинку Что такое общая теория относительности. Картинка про Что такое общая теория относительности. Фото Что такое общая теория относительности

Общая теория относительности – геометрическая теория тяготения, развивающая специальную теорию относительности

Как понять Общую теорию относительности?

Общую теорию относительности Эйнштейна можно выразить всего в 12 словах:«пространство-время говорит материи, как двигаться; материя говорит пространству-времени, как изгибаться». Но это краткое описание, сделанное физиком Джоном Уилером, скрывает более сложную и глубокую истину. Помимо квантовой теории, общая теория относительности является одним из двух столпов современной физики – нашей рабочей теории гравитации и очень большой теории планет, галактик и Вселенной в целом. Она является продолжением специальной теории относительности Эйнштейна – но настолько массивной, что ему потребовалось 10 лет, с 1905 по 1915 год, чтобы перейти от одной к другой.

Как пишет New Scientist, согласно специальной теории относительности (СТО) движение искривляет пространство и время. ОТО Эйнштейна объединила ее с принципом, отмеченным Галилеем более трех столетий назад: падающие объекты ускоряются с одинаковой скоростью независимо от их массы.

Перо и молоток, упавшие с падающей Пизанской башни, ударятся о землю одновременно, если вы не учитываете сопротивление воздуха.

Вслед за Галилеем Исаак Ньютон показал, что это может быть верно только в том случае, если присутствует странное совпадение: инерционная масса, которая количественно определяет сопротивление тела ускорению, всегда должна быть равна гравитационной массе, которая количественно определяет реакцию тела на гравитацию. Нет никакой очевидной причины, почему это должно быть так, но ни один эксперимент никогда не разделял эти две величины.

Точно так же, как он использовал постоянную скорость света для построения специальной теории относительности, Эйнштейн объявил это принципом природы: принципом эквивалентности. Вооружившись этим и новой концепцией пространства и времени как переплетенного «пространства-времени», вы можете построить картину, в которой гравитация является лишь формой ускорения.

Что такое общая теория относительности. Смотреть фото Что такое общая теория относительности. Смотреть картинку Что такое общая теория относительности. Картинка про Что такое общая теория относительности. Фото Что такое общая теория относительности

Массивные объекты искривляют пространство-время вокруг себя, заставляя предметы ускоряться по направлению к ним.

Хотя гравитация доминирует в больших космических масштабах и вблизи очень больших масс, таких как планеты или звезды, она на самом деле является самой слабой из четырех известных сил природы – и единственной, не объясненной квантовой теорией. Квантовая теория и общая теория относительности применяются в разных масштабах. Это мешает понять, что происходило в самые ранние моменты Большого взрыва, например, когда Вселенная была очень маленькой, а сила гравитации огромна. В другой ситуации, когда эти силы сталкиваются у горизонта событий черной дыры, возникают неразрешимые парадоксы.

Например, квантовая механика имеет способы принимать во внимание такие понятия, как бесконечность, но если мы попытаемся сделать то же самое с общей теорией относительности, математика порождает предсказания, которые не имеют смысла.

Некоторые физики возлагают надежду на то, что однажды некая «теория всего» сможет объединить квантовую теорию и общую теорию относительности, хотя такие попытки, как теория струн и теория петлевой квантовой гравитации, до сих пор не принесли никаких результатов. Между тем ОТО Эйнштейна предсказала, что очень плотные скопления массы могут исказить пространство-время настолько, что даже свет не сможет вырваться из него. Теперь мы называем эти объекты «черными дырами», можем фотографировать «горизонт событий», который окружает этих космических монстров, и практически убеждены, что в центре каждой массивной галактики вращается сверхмассивная черная дыра.

Что такое общая теория относительности. Смотреть фото Что такое общая теория относительности. Смотреть картинку Что такое общая теория относительности. Картинка про Что такое общая теория относительности. Фото Что такое общая теория относительности

Математические уравнения общей теории относительности Эйнштейна, проверенные снова и снова, в настоящее время являются наиболее точным способом предсказания гравитационных взаимодействий, заменив разработанные Исааком Ньютоном за несколько столетий до этого.

Еще больше интересных статей о том, как устроена Вселенная вокруг нас, читайте на нашем канале в Яндекс.Дзен. Подписка позволяет читать статьи, которых нет на сайте.

Но, возможно, самый большой триумф общей теории относительности наступил в 2015 году, когда были открыты гравитационные волны – рябь в пространстве-времени, вызванная движением очень массивных объектов. Сигнал о том, что две черные дыры соединились и слились воедино, стал триумфом кропотливой, терпеливой работы, проделанной международной командой исследователей лабораторий LIGO VIRGO. Подробнее о том, как эксперты ищут гравитационные волны сегодня, читайте в увлекательном материале Ильи Хеля. Так или иначе, разработка квантово-физической «версии» общей теории относительности остается постоянной целью современной физики.

Источник

Теория относительности

Законы природы не зависят от систем отсчета.

Говорят, что прозрение пришло к Альберту Эйнштейну в одно мгновение. Ученый якобы ехал на трамвае по Берну (Швейцария), взглянул на уличные часы и внезапно осознал, что если бы трамвай сейчас разогнался до скорости света, то в его восприятии эти часы остановились бы — и времени бы вокруг не стало. Это и привело его к формулировке одного из центральных постулатов относительности — что различные наблюдатели по-разному воспринимают действительность, включая столь фундаментальные величины, как расстояние и время.

Говоря научным языком, в тот день Эйнштейн осознал, что описание любого физического события или явления зависит от системы отсчета, в которой находится наблюдатель (см. Эффект Кориолиса). Если пассажирка трамвая, например, уронит очки, то для нее они упадут вертикально вниз, а для пешехода, стоящего на улице, очки будут падать по параболе, поскольку трамвай движется, в то время как очки падают. У каждого своя система отсчета.

Но хотя описания событий при переходе из одной системы отсчета в другую меняются, есть и универсальные вещи, остающиеся неизменными. Если вместо описания падения очков задаться вопросом о законе природы, вызывающем их падение, то ответ на него будет один и тот же и для наблюдателя в неподвижной системе координат, и для наблюдателя в движущейся системе координат. Закон распределенного движения в равной мере действует и на улице, и в трамвае. Иными словами, в то время как описание событий зависит от наблюдателя, законы природы от него не зависят, то есть, как принято говорить на научном языке, являются инвариантными. В этом и заключается принцип относительности.

Как любую гипотезу, принцип относительности нужно было проверить путем соотнесения его с реальными природными явлениями. Из принципа относительности Эйнштейн вывел две отдельные (хотя и родственные) теории. Специальная, или частная, теория относительности исходит из положения, что законы природы одни и те же для всех систем отсчета, движущихся с постоянной скоростью. Общая теория относительности распространяет этот принцип на любые системы отсчета, включая те, что движутся с ускорением. Специальная теория относительности была опубликована в 1905 году, а более сложная с точки зрения математического аппарата общая теория относительности была завершена Эйнштейном к 1916 году.

Специальная теория относительности

Большинство парадоксальных и противоречащих интуитивным представлениям о мире эффектов, возникающих при движении со скоростью, близкой к скорости света, предсказывается именно специальной теорией относительности. Самый известный из них — эффект замедления хода часов, или эффект замедления времени. Часы, движущиеся относительно наблюдателя, идут для него медленнее, чем точно такие же часы у него в руках.

Время в системе координат, движущейся со скоростями, близкими к скорости света, относительно наблюдателя растягивается, а пространственная протяженность (длина) объектов вдоль оси направления движения — напротив, сжимается. Этот эффект, известный как сокращение Лоренца—Фицджеральда, был описан в 1889 году ирландским физиком Джорджем Фицджеральдом (George Fitzgerald, 1851–1901) и дополнен в 1892 году нидерландцем Хендриком Лоренцем (Hendrick Lorentz, 1853–1928). Сокращение Лоренца—Фицджеральда объясняет, почему опыт Майкельсона—Морли по определению скорости движения Земли в космическом пространстве посредством замеров «эфирного ветра» дал отрицательный результат. Позже Эйнштейн включил эти уравнения в специальную теорию относительности и дополнил их аналогичной формулой преобразования для массы, согласно которой масса тела также увеличивается по мере приближения скорости тела к скорости света. Так, при скорости 260 000 км/с (87% от скорости света) масса объекта с точки зрения наблюдателя, находящегося в покоящейся системе отсчета, удвоится.

Со времени Эйнштейна все эти предсказания, сколь бы противоречащими здравому смыслу они ни казались, находят полное и прямое экспериментальное подтверждение. В одном из самых показательных опытов ученые Мичиганского университета поместили сверхточные атомные часы на борт авиалайнера, совершавшего регулярные трансатлантические рейсы, и после каждого его возвращения в аэропорт приписки сверяли их показания с контрольными часами. Выяснилось, что часы на самолете постепенно отставали от контрольных все больше и больше (если так можно выразиться, когда речь идет о долях секунды). Последние полвека ученые исследуют элементарные частицы на огромных аппаратных комплексах, которые называются ускорителями. В них пучки заряженных субатомных частиц (таких как протоны и электроны) разгоняются до скоростей, близких к скорости света, затем ими обстреливаются различные ядерные мишени. В таких опытах на ускорителях приходится учитывать увеличение массы разгоняемых частиц — иначе результаты эксперимента попросту не будут поддаваться разумной интерпретации. И в этом смысле специальная теория относительности давно перешла из разряда гипотетических теорий в область инструментов прикладной инженерии, где используется наравне с законами механики Ньютона.

Возвращаясь к законам Ньютона, я хотел бы особо отметить, что специальная теория относительности, хотя она внешне и противоречит законам классической ньютоновской механики, на самом деле практически в точности воспроизводит все обычные уравнения законов Ньютона, если ее применить для описания тел, движущихся со скоростью значительно меньше, чем скорость света. То есть, специальная теория относительности не отменяет ньютоновской физики, а расширяет и дополняет ее (подробнее эта мысль рассматривается во Введении).

Принцип относительности помогает также понять, почему именно скорость света, а не какая-нибудь другая, играет столь важную роль в этой модели строения мира — этот вопрос задают многие из тех, кто впервые столкнулся с теорией относительности. Скорость света выделяется и играет особую роль универсальной константы, потому что она определена естественнонаучным законом (см. Уравнения Максвелла). В силу принципа относительности скорость света в вакууме c одинакова в любой системе отсчета. Это, казалось бы, противоречит здравому смыслу, поскольку получается, что свет от движущегося источника (с какой бы скоростью он ни двигался) и от неподвижного доходит до наблюдателя одновременно. Однако это так.

Благодаря своей особой роли в законах природы скорость света занимает центральное место и в общей теории относительности.

Общая теория относительности

Общая теория относительности применяется уже ко всем системам отсчета (а не только к движущимися с постоянной скоростью друг относительно друга) и выглядит математически гораздо сложнее, чем специальная (чем и объясняется разрыв в одиннадцать лет между их публикацией). Она включает в себя как частный случай специальную теорию относительности (и, следовательно, законы Ньютона). При этом общая теория относительности идёт значительно дальше всех своих предшественниц. В частности, она дает новую интерпретацию гравитации.

Общая теория относительности делает мир четырехмерным: к трем пространственным измерениям добавляется время. Все четыре измерения неразрывны, поэтому речь идет уже не о пространственном расстоянии между двумя объектами, как это имеет место в трехмерном мире, а о пространственно-временных интервалах между событиями, которые объединяют их удаленность друг от друга — как по времени, так и в пространстве. То есть пространство и время рассматриваются как четырехмерный пространственно-временной континуум или, попросту, пространство-время. В этом континууме наблюдатели, движущиеся друг относительно друга, могут расходиться даже во мнении о том, произошли ли два события одновременно — или одно предшествовало другому. К счастью для нашего бедного разума, до нарушения причинно-следственных связей дело не доходит — то есть существования систем координат, в которых два события происходят не одновременно и в разной последовательности, даже общая теория относительности не допускает.

Закон всемирного тяготения Ньютона говорит нам, что между любыми двумя телами во Вселенной существует сила взаимного притяжения. С этой точки зрения Земля вращается вокруг Солнца, поскольку между ними действуют силы взаимного притяжения. Общая теория относительности, однако, заставляет нас взглянуть на это явление иначе. Согласно этой теории, гравитация — это следствие деформации («искривления») упругой ткани пространства-времени под воздействием массы (при этом чем тяжелее тело, например Солнце, тем сильнее пространство-время «прогибается» под ним и тем, соответственно, сильнее его гравитационное поле). Представьте себе туго натянутое полотно (своего рода батут), на которое помещен массивный шар. Полотно деформируется под тяжестью шара, и вокруг него образуется впадина в форме воронки. Согласно общей теории относительности, Земля обращается вокруг Солнца подобно маленькому шарику, пущенному кататься вокруг конуса воронки, образованной в результате «продавливания» пространства-времени тяжелым шаром — Солнцем. А то, что нам кажется силой тяжести, на самом деле является, по сути чисто внешнем проявлением искривления пространства-времени, а вовсе не силой в ньютоновском понимании. На сегодняшний день лучшего объяснения природы гравитации, чем дает нам общая теория относительности, не найдено.

Проверить общую теорию относительности трудно, поскольку в обычных лабораторных условиях ее результаты практически полностью совпадают с тем, что предсказывает закон всемирного тяготения Ньютона. Тем не менее несколько важных экспериментов были произведены, и их результаты позволяют считать теорию подтвержденной. Кроме того, общая теория относительности помогает объяснить явления, которые мы наблюдаем в космосе, — например, незначительные отклонения Меркурия от стационарной орбиты, необъяснимые с точки зрения классической механики Ньютона, или искривление электромагнитного излучения далеких звезд при его прохождении в непосредственной близости от Солнца.

На самом деле результаты, которые предсказывает общая теория относительности, заметно отличаются от результатов, предсказанных законами Ньютона, только при наличии сверхсильных гравитационных полей. Это значит, что для полноценной проверки общей теории относительности нужны либо сверхточные измерения очень массивных объектов, либо черные дыры, к которым никакие наши привычные интуитивные представления неприменимы. Так что разработка новых экспериментальных методов проверки теории относительности остается одной из важнейших задач экспериментальной физики.

Относительность времени моментально приводит к подтверждению неклассического закона сложения скоростей при условии максимальности скорости света:
и то, и другое открыл, фактически, Арман Физо в 1851г.

См.вып.02 в http://samlib.ru/editors/w/wira/zhetfufnimz.shtml

_ _ _ _ _ Птолемей ХХ века
или «На всякого мудреца довольно простоты» :

http://img0.liveinternet.ru/images/attach/b/4//4056/4056146_ ptolemaeusxx.doc
http://img0.liveinternet.ru/images/attach/b/4//4056/4056148_ ptolemaeusxx.pdf
http://www.spbtalk.ru/index.php?act=Attach&type=post&amp ;id=34669
http://www.spbtalk.ru/index.php?act=Attach&type=post&amp ;id=34670
http://allmatematika.ru/e107_files/public/1375514245_6796_FT 0_ptolemaeus-xx.doc
http://sfiz.ru/datas/users/15068-1375514587_ptolemaeus-xx.do c
http://sfiz.ru/datas/users/15068-1375514587_ptolemaeus-xx.pd f
.
.

Почему берется «классическая» кинетическая энергия, и потом строятся какие-то рассуждения о предельной скорости?

ну да, кусок мозга идиота, обладая конечной массой, никогда не вылетит за гравитационный радиус!

А что излучению кто-то запрещает иметь энергию, достаточную чтобы предолеть любой барьер?

Далее, кто сказал, что вещество иссчезает бесследно? Оно может только увеличить массу черной дыры! Черная дыра обязана расти.

Ну а что касается времени, так оно замедляется НА НАШ взгляд у тех парней которые летят к дыре. Когда они летят со скоростью света к черной дыре, то для нас они стали коротышками и жизнь их остановилась в тот момент, когда они приблизились к этом радиусу, но это этого, на наш же взгляд, они не стали лететь к нему медленней!Все процессы у них пошли медленней, но сами они в наших глазах ни на грамм не стали медленней двигаться и спокойно ушли за горизонт с застывшими лицами

Несколько замечаний. Первое. Почему-то никто не обращает внимания на явное противоречие у Эйнштейна: его первый постулат о равнозначности инерциальных систем отсчета, ничем, кстати, на отличающийся от принципа относительности Галилея, перастает работать в релятивистских системах, т.е. системах, движущихся с около световыми скоростям. Там начинаются фокусы. Увеличивается масса движущегося тела. Уменьшаются пространственные и временные интервалы, что влечет за собой ничем не объяснимые уменьшение размеров тел, замедление всех физических и биологических процессов (отсюда «эффект близенцов»). Следуют эти «эффекты» из всем известных соотношений между скоростью движения и такими параметрами, как масса, размер в направлении движения, «собственное время жизни». Кстати, можно показать, что приводимые в качестве подтверждения этих эффектов опыты, можно интерпретировать иначе. При этом все эти эффекты получают вполне обычное истолкование. Подробно об этом можно прочесть в книге «Физические очерки», автор Захарченко Г.А. Книгу можно найти в ленинке и магазине «Физ-мат книга», т. 409 93 28.

Второе. По поводу эфира. Его необходимость признавал и Эйнштейн, разрабатывая свою общую теорию относительности. Но все дело в том, что понимать под эфиром. Общепринято эфиром считать специальную среду, проводящую электромагнитые поля. А что если эфиром считать обычные вещественные среды: воздух, прозрачные жидкие и твердые тела, проводящие свет, радио- и другие электромагнитные сигналы? Тогда легко объяснить все опыты по поиску специализированного «эфира» и многие другие, трудно поддающиеся объяснению. Подробно об этом в названной уже книге.

Третье. Как не хотят этого признавать некоторые критики Эйнштейна, изменения массы, длины и временного интервала происходят на самом деле, но не так, как у Эйнштейна. Это можно показать, но для этого надо рассматривать движение реального физического объекта, взаимодействующего с реальной же физической средой, а не относительное движение абстрактных координатных систем, откуда и были получены известные релятивистские соотношения. Подробнее в вышеназванной книге.

По какому пункту не проходит у понимающих вот это утверждение :

2 его вариации:
1. Допустим время есть неизменное ламинарное свойство Мира, те мы можем замедлить законы Мира, ускорить их, но не обратить их.
Тогда получается прошлое настоящее будущее полностью определено законами Мира (зМ), но так как зМ БК, вариации прошлого настоящего будущего БК. (нет судьбы, нет будущего, нет прошлого, есть только настоящее и наивероятный, но не абсолютный вариант развития).
2. Допустим время такой же параметр как и все остальные, подчиняющийся законам Мира, на который возможно оказать влияние. Если время также можно изменять, как любой параметр, то Мир окажет своим зМ, включающими в себя законы влияющие на время, что породит новый Мир (кто называет это ‘новая стрела времени’). Так как зМ и само БК, то Мир породит БК количество Миров, рождающее БК Миров.
Даже если мы сможем овладеть законами Мира-Времени (частью, БК зМ нельзя овладеть) позволяющими управлять Временем-пространством Миров, мы окажем влияние только на действующий Мир (в том в котором мы сейчас находимся). Влияние на субъективный Мир (из которого мы начали свое путешествие) мы можем оказать, если он будет действующим.

3. Для субъективного Мира нет особой разницы, действительна 1 или 2 вариация, так как моделирование Мира в 1 вариации подобна действующему Миру 2 вариации, оказанное влияние на субъективный Мир порождено моделированием или простанственно-временным изменениям.
Вариации времени оказывают влияние только на субъект, либо он находиться в смоделированном Мире, либо в другом действительном.

1. Выживает сильнейший, сильнейший значит наиболее устойчивая система.
2. Развитие для вселенной есть переход на более устойчивую систему.
3. Чем облцасть (вселенная, галактика, планетарная система, планета государство, семья, человек, аыватом, квант идт) наиболее устойчива к воздействию Мира, тем больше она распространяется.
4. Как можно глубже познать в этот Мир, как следствие, больше распространиться и оказывать на него большее влияние, чем другие.
5. Необходимо найти наиболее быстрый путь познания Мира, поглощения, обработки, преобразования его эн.
6. Субъект сам определяет для себя смысл существования, на основе полученной информации.

1. Любое действие определит, повлияет на будущее,
2. Чем большим Знаниями обладаешь, тем больше твое влияние на Мир.
3. Чем больше твое влияние на Мир, тем больше твоя ценность для Мира (в нашем социуме ценность выражена, в основном, в деньгах).

pva сайте.)
Я С БОЛЬШИМ ОПТИМИЗМОМ СМОТРЮ ВПЕРЕД, ПОЛЬЗУЯСЬ ТЕОРИЯМИ ЭЙНШТЕЙНА, И ВИЖУ ХОРОНИЕ ПЕРСПЕКТИВЫ. Правильней сказать, эти перспективы следуют из таких теорий.

«Эфир» в данном случае это некая гипотетическая среда, которая находится в промежутках между элементарными частицами. Нечто вроде физического вакуума.

Отличие понятий «эфир» и «физический вакуум» следующее: эфир имеет какое-то положение в пространстве, т.е. можно было бы сказать, что некоторое тело движется относительно эфира со скоростью, скажем, 35 метров в секунду. А вакуум конкретного положения не имеет, нельзя сказать, что скорость тела относительно вакуума такая-то.

Вторая загадка от Виктора Квитко.

Зная как устроена Формула Лоренца, можно устраивать интересные соревнования.

Сейчас я проведу чемпионат мира по легкой атлетике.
В чемпионате принимают участие две движущиеся системы
координат СК1 и СК2(два источника излучения).
Первая летит со скоростью V1 = 90000 км/сек.
Вторая летит со скоростью V2 =190000 км/сек.
После первой секунды полета каждая система координат
выставляет для участия в чемпионате своего спортсмена.
Это два высокоскоростных фотона Ф1 и Ф2.
Каждому фотону нужно пробежать ровно 300000 км.
Соревнования проходят по формуле T=C/V.
Скорость бега второго фотона формула Лоренца уже вычислила. Он будет бежать со скоростью V**= 232163,73 км/сек.
А вот первому фотону формула Лоренца выделила по теореме Пифагора скорость бега V*= 286181,76 км/сек. Сразу видно что это фаворит.

Чемпионат начинается полетом двух СК(источников излучения). Каждый пролетел со своей скоростью ровно секунду, и вот стартовали фотоны.
Первый бежал со скоростью V*= 286181,76 км/сек и дистанцию 300000 пробежал за 1,0482848 сек.
Второй бежал со скоростью V**= 232163,73 км/сек и дистанцию 300000 км пробежал за 1,2921915 сек.

Вопрос:
Почему результаты фотонов совпадают с результатами
формулы Лоренца?

Рано или поздно по теории относительности
пройдет бритва Оккама.
beta-pozytron

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *