Что такое одометрический модуль деформации
Модуль общей деформации грунта (понятие и особенности)
Величина модуля общей деформации меняется в процессе воздействия на грунт:
где Eot — модуль общей деформации грунта в период действия нагрузки t
P — нагрузка;
h — мощность деформируемого слоя;
St — полная деформация, успевающая развиться за период времени t.
Модуль общей деформации по сравнению с модулем нормальной упругости имеет следующие отличия [Механика грунтов. Бартоломей А.А.]:
Модуль деформации грунта определяют по следующим нормативным документам
Рассмотрим немного подробнее нормирование методов определения модуля деформации.
Определение лабораторного модуля деформации согласно ГОСТ 12248-2010:
1. Методом одноосного сжатия в соответствии с разделом 5.2. для определения модуля деформации и упругости для полускальных и глинистых грунтов с IL ≤ 0,25.
Модуль деформации вычисляется по п.5.2.5.3:
Модуль деформации E в заданном диапазоне напряжений Δσ вычисляют по нагрузочной ветви зависимости ε1 = f(σ) по формуле:
2. Методом трехосного сжатия в соответствии с разделом 5.3. для определения
модуля деформации любых дисперсных грунтов..
Модуль деформации вычисляется по п.5.2.5.3:
Модуль деформации E определяют при испытаниях, проведенных при постоянном значении напряжений σ3 ( Δσ3 =0) и вычисляют по формуле:
Δσ1 — приращение напряжений σ1 в заданном диапазоне;
Δε1 — приращение относительных вертикальной деформации образца.
3. Методом компрессионного сжатия в соответствии с разделом 5.4. для песков мелких и пылеватых, глинистых грунтов, органо-минеральных и органических грунтов.
Модуль деформации вычисляется по п.5.4.6.4:
Модуль деформации E в заданном диапазоне напряжений Δσ вычисляют по нагрузочной ветви зависимости ε1 = f(σ) по формуле:
Eoed = Δp / Δε (5.33)
где Δε — изменение относительного сжатия, соответствующее Δp;
mo — коэффициент сжимаемости, соответствующий Δp;
β — коэффициент, учитывающий отсутствие поперечного расширения грунта в компрессионном приборе и вычисляемый по формуле:
β = 1- (2 · υ 2 ) / (1 — υ ) (5.36)
где υ — коэффициент поперечной деформации, определяемый по результатам испытаний в приборах трехосного сжатия по 5.3 или в компрессионных приборах с измерением бокового давления.
При отсутствии экспериментальных данных допускается принимать β равным:
Определение полевого модуля деформации согласно ГОСТ 20276-2012:
1. Методом испытания штампом в соответствии с разделом 5 для определения модуля деформации дисперсных грунтов: минеральных, органо-минеральных и органических грунтов.
Определяют по результатам нагружения грунта вертикальной нагрузкой в забое горной выработки с помощью штампа.
Модуль деформации E вычисляется по п.5.5.2:
Kp — коэффициент, принимаемый в зависимости от заглубления штампа h/D ( h — глубина расположения штампа относительно дневной поверхности грунта, см; D — диаметр штампа, см);
K1 — коэффициент, принимаемый для жесткого круглого штампа равным 0,79;
Δp — приращение давления на штамп;
ΔS — приращение осадки штампа, соответствующее Δp.
2. Методом испытания радиальным прессиометром в соответствии с разделом 5 для определения модуля деформации дисперсных грунтов: песков, глинистых, органо-минеральных и органических грунтов..
В состав установки для испытания грунта радиальным прессиометром должны входить:
Модуль деформации E вычисляется по п.5.5.2:
где Kr — корректирующий коэффициент;
ro — начальный радиус скважины;
Δp — приращение давления на стенку скважины;
ΔS — приращение перемещения стенки скважины (по радиусу).
Какой модуль деформации – «правильный»?
Ни в одном нормативном документе не указано, в каких диапазонах определять модуль деформации, зато указано, что условия должны соответствовать действующему или предполагаемому напряженному состоянию. При выполнении испытаний в строгом соответствии с ГОСТ 12248 или ГОСТ 20276 невозможно в принципе получить одинаковые или близкие значения модулей деформации даже для одной и той же разновидности грунта. Условия испытания определяются в каждом конкретном случае программой испытаний, в зависимости от глубины залегания и дополнительной нагрузки от сооружения. Тогда откуда же взялось убеждение в существовании неких «механических констант», почему при прохождении экспертизы требуется «попадание в модуль» и что делать тем, кому требуются точные данные?
Каждый специалист в области инженерных изысканий или геотехнического проектирования знает, что механическое поведение грунтов с большим трудом поддается количественной оценке. Это связано с огромным количеством факторов, влияющих на жесткость и сопротивление сдвигу – и с этого утверждения начинается большинство курсов механики грунтов. Между тем, без количественной оценки невозможен расчет, а значит невозможно и само геотехническое проектирование. Именно поэтому за десятки лет разработаны многочисленные методы испытаний, позволяющие определить те или иные параметры, позволяющие с приемлемой точностью выполнить расчет основания.
В зависимости от поставленных целей меняются и методы их достижения. Для типовых сооружений в простых инженерно-геологических условиях достаточно применения хорошо известной модели Кулона-Мора, на которой построены все методы расчета, изложенные в СП 22.13330.2016. Для более сложных ситуаций рекомендуются уже нелинейные модели и численные методы расчета, что также отражено в СП. Методы определения параметров также определяются в зависимости от геотехнической категории: наиболее достоверным считается штамповое испытание, далее следует стабилометр и, наконец, компрессионное сжатие.
К сожалению, на практике все не так гладко.
Позднее Н.А. Цытович указывал (Механика грунтов, 1983, стр. 67), что принцип линейной деформируемости справедлив только для грунтов «средней уплотненности при давлениях порядка 0,1-0,3 МПа». Такой уровень напряжений вполне соответствовал уровню практических задач середины XX века, когда требовалось с высокой скоростью возводить типовые и технически несложные здания. В результате на этом предположении была построена вся система нормативных документов, и с этого момента модуль деформации в инженерных расчетах стал восприниматься как некоторая константа, определяемая разновидностью грунта. Тем не менее, в НиТУ 127-55 «Нормы и технические условия проектирования естественных оснований зданий и промышленных сооружений» содержится следующий параграф:
44 (4.7). Характеристики грунтов, входящие в расчет деформации основания (модуль сжатия, коэффициент бокового расширения, угол внутреннего трения, удельное сцепление), определяются с учетом природного напряженного состояния грунта на основе исследований грунтов.
Впервые справочные значения механических параметров появились в СНиП II-Б.1-62. Таблица 13 данного документа содержит нормативные и расчетные величины для песчаных и глинистых грунтов безотносительно генезиса. В дальнейшем эта таблица была расширена для грунтов различного генезиса и в СП 22.13330 приведена как Приложение А. При этом использование значений из Приложения А допустимо только при предварительных расчетах сооружений геотехнической категории 2 (п. 5.3.20).
Отметим, что представленные в Приложении А значения параметров с 1962 года по настоящее время принципиально не изменились. Для оценки изменений, произошедших в области строительства за 60 лет, специальных знаний не требуется – достаточно простой наблюдательности. Типовое сооружение 1962 года – пятиэтажное кирпичное здание с фундаментом мелкого заложения. Типовое сооружение в наши дни – условно КС-2 – жилое здание высотой не более 100 метров с подземной частью глубиной не более 15 метров, из монолитного железобетона. Совершенно очевидно, что диапазоны нагрузок на основание несопоставимы, как и глубины заложения.
Текущая редакция СП 22.13330.2016 с изменениями 1,2 и 3 ни в одном параграфе не устанавливает рекомендуемых значений параметров деформируемости. В разделах 6 и 9 указывается, что «деформационные характеристики определяются с учетом диапазона», однако величина данного диапазона не регламентируется. При этом, как и в документе 1955 года, указано, что их следует определять с учетом природного напряженного состояния на основе непосредственных испытаний (пп. 6.4.8, 6.4.13, 9.7). В качестве рекомендуемых методов указаны трехосное и компрессионное сжатие, штамповые и прессиометрические испытания.
Это же относится к испытаниям компрессионного сжатия. В соответствии с п. 5.4.1.3 «Диапазон давлений, при которых проводят испытания, определяется в программе испытаний с учетом напряженного состояния грунта в массиве, т.е. с учетом передаваемых на основание нагрузок и бытового давления. Во всех случаях конечное давление должно быть больше бытового давления на глубине залегания образца грунта».
Аналогичная ситуация и в ГОСТ 20276-2012. Для штамповых испытаний согласно п. 5.4.1 «общее число ступеней давления после достижения давления, соответствующего вертикальному эффективному напряжению от собственного веса грунта σzg на отметке испытания, должно быть не менее четырех». Конкретная величина одной такой ступени определяется разновидностью грунта и составляет от 0,01 до 0,1 МПа. Для прессиометрических испытаний вообще не приводится никаких условий по давлениям, так как сам по себе метод построен на компенсации и превышении бытового горизонтального напряжения.
Подведем промежуточный итог. Ни в одном нормативном документе не указано в каких диапазонах определять модуль деформации, зато указано, что условия должны соответствовать действующему или предполагаемому напряженному состоянию. При выполнении испытаний в строгом соответствии с ГОСТ 12248 или ГОСТ 20276 невозможно в принципе получить одинаковые или близкие значения модулей деформации даже для одной и той же разновидности грунта. Условия испытания определяются в каждом конкретном случае программой испытаний, в зависимости от глубины залегания и дополнительной нагрузки от сооружения. Тогда откуда же взялось убеждение в существовании неких «механических констант»? И почему при прохождении экспертизы требуется «попадание в модуль»?
Требования нормативных технических документов обеспечивают надежность и безопасность проектируемых конструкций, а в случае ГОСТ – качество результата определения параметров. Если в ходе испытаний соблюдены все требования ГОСТ по части условий и методики проведения опыта, использовалось сертифицированное и поверенное оборудование, то достоверность результата опыта считается обеспеченной. Следовательно, задачей эксперта в данном случае должна являться оценка соответствия выполненной работы требованиям нормативного документа.
Безусловно, величина полученного параметра – тоже косвенный признак качества испытания, ведь у модуля деформации есть физический смысл. Величина не может быть, например, отрицательной, или на порядок превосходить часто встречающиеся значения. Подобные случаи должны являться основанием для более внимательного изучения результата испытания, условий проведения опыта, даже добросовестности лаборатории. Но ни в коем случае не может результат испытаний «подгоняться» под значения из нормативного документа 60-летней давности!
Делается это обычно довольно просто: диапазон определения параметра смещается с реальных условий работы основания в область, где модуль получится пониже. Проектировщик потом хватается за голову и проектирует свайный фундамент вместо плитного. Осадка по результатам мониторинга составляет 5 мм вместо 120, но из чьего кармана оплачен такой запас уже никто не выясняет.
Вполне ожидаем контраргумент – а как эксперту оценить, насколько то или иное значение правдоподобно, если в нормативных документах и архивах нет этой информации? Для этих целей вполне можно использовать хорошо изученные закономерности изменения жесткости в зависимости от уровня напряжений, например, степенной закон N. Janbu:
где E – ориентировочное значение модуля; E0 – модуль деформации из приложения А, p – давление в опыте; p0 – давление в диапазоне 100-200 кПа; m – показатель силы данной зависимости, лежащий в диапазоне от 0,3 до 1.
Даже в таком, сильно упрощенном виде, он позволит оценить предельные значения параметра. Например, испытание трехосного сжатия для песка мелкого средней плотности при давлении в камере 300 кПа дало модуль деформации в 70 МПа. В Приложении А говорится, что должно быть 30 МПа (диапазон напряжений там не указан, но можно предположить привычные 100-200 кПа).
Полученное значение попадает в границы диапазона, результат испытания может считаться правдоподобным. Однако, повторимся, верные условия проведения опыта (включая содержание технического задания и программы работ) являются основным гарантом качества результата.
В настоящий момент сложилась печальная ситуация. Сложность проектируемых сооружений растет, а вместе с ней и требования проектировщиков к определяемым параметрам. Изыскательские организации располагают оборудованием для проведения высокоточных испытаний в любых диапазонах напряжений. Испытания выполняются (во всяком случае, когда в этом заинтересованы заказчик и исполнитель) с учетом исходного напряженного состояния. Но для прохождения экспертизы механические параметры подгоняются под уровень развития геотехники 1962 года.
Виновато в этом в первую очередь профессиональное сообщество. Недостаточное понимание принципов механики грунтов и вообще применимости понятия «модуль деформации» к грунту приводит к желанию проверить себя справочными данными. В качестве источника таких данных берется нормативный документ – что может быть надежнее? Испытание за испытанием дает одно и то же значение модуля (чтобы штампов делать поменьше, а коэффициент вариации был пониже). Эксперт раз за разом видит это значение, и отчеты успешно отправляются в архив. Песок средней плотности средней крупности получает клеймо « E0 = 30 МПа».
Данный вопрос давно требует открытого общественного обсуждения, с привлечением представителей изыскательского и проектного профессиональных сообществ, экспертизы и профильных научных организаций.
Что такое одометрический модуль деформации
Определение характеристик деформируемости методом компрессионного сжатия
Soils. Determination of deformation parameters by compression testing
Дата введения 2021-06-01
Предисловие
Цели, основные принципы и общие правила проведения работ по межгосударственной стандартизации установлены ГОСТ 1.0 «Межгосударственная система стандартизации. Основные положения» и ГОСТ 1.2 «Межгосударственная система стандартизации. Стандарты межгосударственные, правила и рекомендации по межгосударственной стандартизации. Правила разработки, принятия, обновления и отмены»
1 РАЗРАБОТАН Научно-исследовательским, проектно-изыскательским и конструкторско-технологическим институтом оснований и подземных сооружений им.Н.М.Герсеванова (НИИОСП им.Н.М.Герсеванова) АО «НИЦ «Строительство»
2 ВНЕСЕН Техническим комитетом по стандартизации ТК 465 «Строительство»
3 ПРИНЯТ Межгосударственным советом по стандартизации, метрологии и сертификации (протокол от 31 августа 2020 г. N 132-П)
За принятие проголосовали:
Краткое наименование страны по МК (ИСО 3166) 004-97
Сокращенное наименование национального органа по стандартизации
ЗАО «Национальный орган по стандартизации и метрологии» Республики Армения
Госстандарт Республики Беларусь
Госстандарт Республики Казахстан
4 Приказом Федерального агентства по техническому регулированию и метрологии от 14 октября 2020 г. N 824-ст межгосударственный стандарт ГОСТ 12248.4-2020 введен в действие в качестве национального стандарта Российской Федерации с 1 июня 2021 г.
Информация о введении в действие (прекращении действия) настоящего стандарта и изменений к нему на территории указанных выше государств публикуется в указателях национальных стандартов, издаваемых в этих государствах, а также в сети Интернет на сайтах соответствующих национальных органов по стандартизации.
В случае пересмотра, изменения или отмены настоящего стандарта соответствующая информация будет опубликована на официальном интернет-сайте Межгосударственного совета по стандартизации, метрологии и сертификации в каталоге «Межгосударственные стандарты«
1 Область применения
Настоящий стандарт устанавливает метод лабораторного определения характеристик деформируемости дисперсных грунтов при их исследовании для строительства.
Настоящий стандарт не распространяется на все виды мерзлых грунтов.
2 Нормативные ссылки
В настоящем стандарте использованы нормативные ссылки на следующие международные стандарты:
ГОСТ 5180 Грунты. Методы лабораторного определения физических характеристик
ГОСТ 12071 Грунты. Отбор, упаковка, транспортирование и хранение образцов
ГОСТ 12536 Грунты. Методы лабораторного определения гранулометрического (зернового) и микроагрегатного состава
ГОСТ 22733 Грунты. Метод лабораторного определения максимальной плотности
ГОСТ 30416 Грунты. Лабораторные испытания. Общие положения
3 Термины и определения
В настоящем стандарте применены термины по ГОСТ 25100, ГОСТ 30416, а также следующие термины с соответствующими определениями:
3.1 одометрический модуль деформации : Отношение изменения напряжения к соответствующему изменению деформации в заданном интервале напряжений, МПа.
3.2 касательный одометрический модуль деформации : Отношение изменения напряжения к соответствующему изменению деформации, построенное к касательной в точке компрессионной кривой, соответствующей вертикальному эффективному напряжению от собственного веса грунта, МПа.
3.3 коэффициент анизотропии : Отношение значений одометрических модулей деформации, определенное при вертикальном (природном) и горизонтальном положении образцов.
4 Общие положения
4.1 Настоящий стандарт устанавливает требования к методу компрессионного сжатия, включающего компрессионные и консолидационные испытания всех видов дисперсных грунтов для определения характеристик деформируемости, за исключением мерзлых грунтов.
4.2 Общие требования к лабораторным испытаниям грунтов, оборудованию и приборам, лабораторным помещениям, способы изготовления образцов для испытаний приведены в ГОСТ 30416.
4.3 Способы отбора монолитов и подготовки образцов для испытаний должны обеспечить практически полное сохранение их структуры и влажности в соответствии с ГОСТ 12071 и ГОСТ 30416.
4.4 Для испытуемых грунтов должны быть определены физические характеристики по ГОСТ 5180 и гранулометрический состав по ГОСТ 12536.
4.5 В процессе испытаний грунтов ведут журналы, формы которых приведены в приложении А, а при автоматизации процесса испытаний и обработки данных с помощью компьютерных программ результаты опыта выводятся на компьютер в форме паспорта (протокола) испытания.
4.6 Отчет об испытании должен включать в себя:
— идентификацию образца (номер буровой скважины, номер пробы, номер испытания, глубина отбора и т.п.);
— метод подготовки образца (ненарушенного или нарушенного сложения, предварительное водонасыщение);
— начальные размеры образца;
— физические характеристики грунта;
— использованный режим нагружения;
— числовые значения полученных характеристик грунта.
Для всех образцов, помимо определения необходимых физических характеристик, должны быть отмечены характерные особенности (слоистость, трещиноватость, наличие включений и др.).
При необходимости допускается приводить и другую дополнительную информацию.
5 Сущность метода
5.1 Испытания методом компрессионного сжатия проводят в компрессионных приборах (одометрах), исключающих возможность бокового расширения образца при его нагружении вертикальной нагрузкой.
Метод компрессионного сжатия включает в себя компрессионные и консолидационные испытания грунтов.
5.2 Компрессионные испытания проводят для определения коэффициента сжимаемости , секущего одометрического модуля деформации
, касательного одометрического модуля деформации
, модуля повторного нагружения
.
По результатам компрессионных испытаний определяется зависимость деформации образца от нагрузки.
5.3 Консолидационные испытания проводят для определения коэффициентов фильтрационной и вторичной консолидации и
соответственно.
По результатам консолидационных испытаний определяют зависимость деформации от времени при фиксированном значении нагрузки.
5.4 Диапазон давлений, при котором проводятся компрессионные испытания, определяется в программе испытаний с учетом эффективного напряжения от собственного веса грунта и нагрузки от сооружения.
Природное эффективное напряжение от собственного веса грунта определяется в соответствии с нормативными документами, действующими на территории государств, проголосовавших за принятие настоящего стандарта.
5.5 При консолидационных испытаниях значение фиксированной ступени напряжения определяется программой испытаний с учетом эффективного напряжения от собственного веса грунта и нагрузки от сооружения.
5.6 Для испытаний используют образцы грунта ненарушенного сложения с природной влажностью, принудительно водонасыщенные образцы или образцы нарушенного сложения с заданными значениями плотности и влажности по ГОСТ 30416.
5.7 Образец грунта должен иметь форму цилиндра диаметром не менее 70 мм и отношение диаметра к высоте должно составлять от 2,8 до 3,5. Максимальный размер фракции грунта (включений, агрегатов) в образце должен быть не более 1/5 высоты образца.
6 Оборудование и приборы
6.1 В состав установки для испытания грунта методом компрессионного сжатия должны входить:
— компрессионный прибор (одометр), включающий рабочее кольцо, корпус, перфорированный вкладыш, перфорированный штамп и поддон для сбора, отвода и подачи воды;
— механизм для вертикального нагружения образца грунта;
— устройство для измерения вертикальных деформаций образца грунта.
В компрессионном приборе дополнительно может быть предусмотрена возможность измерения порового давления с одного из торцов образца и бокового давления грунта на стенки рабочего кольца.
6.2 Конструкция компрессионного прибора должна обеспечивать:
— герметичность деталей прибора;
— центрированную передачу нагрузки на штамп;
— первоначальную нагрузку на образец от штампа и закрепленных на нем измерительных приборов не более 0,0025 МПа;