какие события называются случайными
Какие события называются случайными
Всякое действие, явление, наблюдение с несколькими различными исходами, реализуемое при данном комплексе условий, будем называть испытанием.
Результат этого действия или наблюдения называется событием.
Если событие при заданных условиях может произойти или не произойти, то оно называется случайным. В том случае, когда событие должно непременно произойти, его называют достоверным, а в том случае, когда оно заведомо не может произойти,- невозможным.
События называются несовместными, если каждый раз возможно появление только одного из них.
События называются совместными, если в данных условиях появление одного из этих событий не исключает появление другого при том же испытании.
События называются противоположными, если в условиях испытания они, являясь единственными его исходами, несовместны.
Если полная система состоит из двух несовместных событий, то такие события называются противоположными и обозначаются
Пример. В коробке находится 30 пронумерованных шаров. Установить, какие из следующих событий являются невозможными, достоверными, противоположными:
достали пронумерованный шар (А);
достали шар с четным номером (В);
достали шар с нечетным номером (С);
достали шар без номера (Д).
Какие из них образуют полную группу?
Полную группу событий составляют А и Д, В и С.
Теория вероятностей, формулы и примеры
Тема непростая, но если вы собираетесь поступать на факультет, где нужны базовые знания высшей математики, освоить материал — must have. Тем более, все формулы по теории вероятности пригодятся не только в универе, но и при решении 4 задания на ЕГЭ. Начнем!
Основные понятия
Французские математики Блез Паскаль и Пьер Ферма анализировали азартные игры и исследовали прогнозы выигрыша. Тогда они заметили первые закономерности случайных событий на примере бросания костей и сформулировали теорию вероятностей.
Когда мы кидаем монетку, то не можем точно сказать, что выпадет: орел или решка.
Но если подкидывать монету много раз — окажется, что каждая сторона выпадает примерно равное количество раз. Из чего можно сформулировать вероятность: 50% на 50%, что выпадет «орел» или «решка».
Теория вероятностей — это раздел математики, который изучает закономерности случайных явлений: случайные события, случайные величины, их свойства и операции над ними.
Вероятность — это степень возможности, что какое-то событие произойдет. Если у нас больше оснований полагать, что что-то скорее произойдет, чем нет — такое событие называют вероятным.
Ну, скажем, смотрим на тучи и понимаем, что дождь — вполне себе вероятное событие. А если светит яркое солнце, то дождь — маловероятное или невероятное событие.
Случайная величина — это величина, которая в результате испытания может принять то или иное значение, причем неизвестно заранее, какое именно. Случайные величины можно разделить на две категории:
Вероятностное пространство — это математическая модель случайного эксперимента (опыта). Вероятностное пространство содержит в себе всю информацию о свойствах случайного эксперимента, которая нужна, чтобы проанализировать его через теорию вероятностей.
Формулы по теории вероятности
Теория вероятности изучает события и их вероятности. Если событие сложное, то его можно разбить на простые составные части — так легче и быстрее найти их вероятности. Рассмотрим основные формулы теории вероятности.
Случайные события. Основные формулы комбинаторики
Классическое определение вероятности
Вероятностью события A в некотором испытании называют отношение:
P (A) = m/n, где n — общее число всех равновозможных, элементарных исходов этого испытания, а m — количество элементарных исходов, благоприятствующих событию A
Таким образом, вероятность любого события удовлетворяет двойному неравенству:
Пример 1. В пакете 15 конфет: 5 с молочным шоколадом и 10 — с горьким. Какова вероятность вынуть из пакета конфету с белым шоколадом?
Так как в пакете нет конфет с белым шоколадом, то m = 0, n = 15. Следовательно, искомая вероятность равна нулю:
Неприятная новость для любителей белого шоколада: в этом примере событие «вынуть конфету с белым шоколадом» — невозможное.
Пример 2. Из колоды в 36 карт вынули одну карту. Какова вероятность появления карты червовой масти?
Количество элементарных исходов, то есть количество карт равно 36 (n). Число случаев, благоприятствующих появлению карты червовой масти (А) равно 9 (m).
Геометрическое определение вероятности
Геометрическая вероятность события А определяется отношением:
P(A)= m(A)/m(G), где m(G) и m(A) — геометрические меры (длины, площади или объемы) всего пространства элементарных исходов G и события А соответственно
Чаще всего, в одномерном случае речь идет о длинах отрезков, в двумерном — о площадях фигур, а в трехмерном — об объемах тел.
Пример. Какова вероятность встречи с другом, если вы договорились встретиться в парке в промежутке с 12.00 до 13.00 и ждете друг друга 5 минут?
У нас есть отличное онлайн обучение по математике для учеников с 1 по 11 классы, записывайся на пробное занятие!
Сложение и умножение вероятностей
Теорема о сложении вероятностей звучит так: вероятность появления одного из двух несовместных событий равна сумме вероятностей этих событий:
P(A + B) = P(A) + P(B)
Эта теорема справедлива для любого числа несовместных событий:
Если случайные события A1, A2. An образуют полную группу несовместных событий, то справедливо равенство:
Произведением событий А и В называется событие АВ, которое наступает тогда, когда наступают оба события: А и В одновременно. Случайные события А и B называются совместными, если при данном испытании могут произойти оба эти события.
Вторая теорема о сложении вероятностей: вероятность суммы совместных событий вычисляется по формуле:
P(A + B) = P(A) + P(B) − P(AB)
События событий А и В называются независимыми, если появление одного из них не меняет вероятности появления другого. Событие А называется зависимым от события В, если вероятность события А меняется в зависимости от того, произошло событие В или нет.
Теорема об умножении вероятностей: вероятность произведения независимых событий А и В вычисляется по формуле:
P(AB) = P(A) * P(B)
Пример. Студент разыскивает нужную ему формулу в трех справочниках. Вероятности того, что формула содержится в первом, втором и третьем справочниках равны 0,6; 0,7 и 0,8.
Найдем вероятности того, что формула содержится:
А — формула содержится в первом справочнике;
В — формула содержится во втором справочнике;
С — формула содержится в третьем справочнике.
Воспользуемся теоремами сложения и умножения вероятностей.
Ответ: 1 — 0,188; 2 — 0,452; 3 — 0,336.
Формула полной вероятности и формула Байеса
По теореме умножения вероятностей:
Аналогично, для остальных гипотез:
Эта формула называется формулой Байеса. Вероятности гипотез называются апостериорными вероятностями, тогда как — априорными вероятностями.
Пример. Одного из трех стрелков вызывают на линию огня, он производит два выстрела. Вероятность попадания в мишень при одном выстреле для первого стрелка равна 0,3, для второго — 0,5; для третьего — 0,8. Мишень не поражена. Найти вероятность того, что выстрелы произведены первым стрелком.
Формула Бернулли
При решении вероятностных задач часто бывает, что одно и тоже испытание повторяется многократно, и исход каждого испытания независит от исходов других. Такой эксперимент называют схемой повторных независимых испытаний или схемой Бернулли.
Примеры повторных испытаний:
Итак, пусть в результате испытания возможны два исхода: либо появится событие А, либо противоположное ему событие. Проведем n испытаний Бернулли. Это означает, что все n испытаний независимы. А вероятность появления события А в каждом случае постоянна и не изменяется от испытания к испытанию.
Биномиальное распределение — распределение числа успехов (появлений события).
Пример. Среди видео, которые снимает блогер, бывает в среднем 4% некачественных: то свет плохой, то звук пропал, то ракурс не самый удачный. Найдем вероятность того, что среди 30 видео два будут нестандартными.
Опыт заключается в проверке каждого из 30 видео на качество. Событие А — это какая-то неудача (свет, ракурс, звук), его вероятность p = 0,04, тогда q = 0,96. Отсюда по формуле Бернулли можно найти ответ:
Ответ: вероятность плохого видео приблизительно 0,202. Блогер молодец🙂
Наивероятнейшее число успехов
Биномиальное распределение ( по схеме Бернулли) помогает узнать, какое число появлений события А наиболее вероятно. Формула для наиболее вероятного числа успехов k (появлений события) выглядит так:
Пример. В очень большом секретном чатике сидит 730 человек. Вероятность того, что день рождения наугад взятого участника чата приходится на определенный день года — равна 1/365 для каждого из 365 дней. Найдем наиболее вероятное число счастливчиков, которые родились 1 января.
Формула Пуассона
При большом числе испытаний n и малой вероятности р формулой Бернулли пользоваться неудобно. Например, 0.97 999 вычислить весьма затруднительно.
В этом случае для вычисления вероятности того, что в n испытаниях событие произойдет k раз, используют формулу Пуассона:
Здесь λ = np обозначает среднее число появлений события в n испытаниях.
Эта формула дает удовлетворительное приближение для p ≤ 0,1 и np ≤10.
События, для которых применима формула Пуассона, называют редкими, так как вероятность, что они произойдут — очень мала (обычно порядка 0,001-0,0001).
При больших np рекомендуют применять формулы Лапласа, которую рассмотрим чуть позже.
Пример. В айфоне 1000 разных элементов, которые работают независимо друг от друга. Вероятность отказа любого элемента в течении времени Т равна 0,002. Найти вероятность того, что за время Т откажут ровно три элемента.
P1000(3) = λ 3 /3! * e −λ = 2 3 /3! * e −2 ≈ 0,18.
Ответ: ориентировочно 0,18.
Теоремы Муавра-Лапласа
Кроме того, пусть Pn(k1;k2) — вероятность того, что число появлений события А находится между k1 и k2.
Локальная теорема Лапласа звучит так: если n — велико, а р — отлично от 0 и 1, то
Интегральная теорема Лапласа звучит так: если n — велико, а р — отлично от 0 и 1, то
Функции Гаусса и Лапласа обладают свойствами, которые пригодятся, чтобы правильно пользоваться таблицей значений этих функций:
Теоремы Лапласа дают удовлетворительное приближение при npq ≥ 9. Причем чем ближе значения q, p к 0,5, тем точнее данные формулы. При маленьких или больших значениях вероятности (близких к 0 или 1) формула дает большую погрешность по сравнению с исходной формулой Бернулли.
Случайное событие
Случа́йное собы́тие — подмножество множества исходов случайного эксперимента; при многократном повторении случайного эксперимента частота наступления события служит оценкой его вероятности.
Случайное событие, которое никогда не реализуется в результате случайного эксперимента, называется невозможным и обозначается символом . Случайное событие, которое всегда реализуется в результате случайного эксперимента, называется достоверным и обозначается символом
.
Содержание
Определение
Математически случайное событие — подмножество пространства элементарных исходов случайного эксперимента; элемент алгебры или сигма-алгебры событий , которая в свою очередь задаётся аксиоматически и вместе с пространством элементарных событий
и вероятностью
образует вероятностное пространство
.
Пример
Случайный эксперимент состоит в бросании игральной кости: пример случайного события — выпавшее число чётно; события «Выпала единица», «Выпала двойка» и т. д. — элементарные исходы эксперимента; совокупность всех событий «Выпала 1»..«Выпала 6» — полная группа событий.
См. также
Ссылки
Полезное
Смотреть что такое «Случайное событие» в других словарях:
случайное событие — — [Л.Г.Суменко. Англо русский словарь по информационным технологиям. М.: ГП ЦНИИС, 2003.] случайное событие Событие, которое при осуществлении некоторых условий может произойти либо не произойти, и для которого имеется определенная… … Справочник технического переводчика
Случайное событие — [random event, chance event] — событие, которое при осуществлении некоторых условий может произойти либо не произойти, и для которого имеется определенная вероятность его наступления. То же (в разных источниках) исход, случай, результат… … Экономико-математический словарь
СЛУЧАЙНОЕ СОБЫТИЕ — (в теории вероятностей) событие, которое может при осуществлении данных условий (т. е. при данном испытании) как произойти, так и не произойти и для которого имеется определенная вероятность его наступления. Наличие у случайного события… … Большой Энциклопедический словарь
случайное событие — (в теории вероятностей), событие, которое может при осуществлении данных условий (то есть при данном испытании) как произойти, так и не произойти и для которого имеется определенная вероятность его наступления. Наличие у случайного события… … Энциклопедический словарь
случайное событие — atsitiktinis įvykis statusas T sritis fizika atitikmenys: angl. accidental event; chance event; random event vok. zufälliges Ereignis, n rus. случайное событие, n pranc. événement aléatoire, m … Fizikos terminų žodynas
Случайное событие — в теории вероятностей, событие, которое может при данных условиях как произойти так и не произойти и для которого имеется определённая Вероятность р (0 ≤ p ≤ 1) его наступления при данных условиях. Наличие у С. с. А определённой… … Большая советская энциклопедия
СЛУЧАЙНОЕ СОБЫТИЕ — любая комбинация исходов нек рого опыта, имеющая определенную вероятность наступления. Пример 1. При бросании двух игральных костей каждый из 36 исходов опыта может быть представлен нарой (i, j), где i число очков на верхней грани цервой кости, а … Математическая энциклопедия
СЛУЧАЙНОЕ СОБЫТИЕ — (в теории вероятностей), событие, к рое может при осуществлении данных условий (т. е. при данном испытании) как произойти, так и не произойти и для к рого имеется определ. вероятность его наступления. Наличие у С. с. определ. вероятности р… … Естествознание. Энциклопедический словарь
Случайное событие — (в теории вероятностей) событие, которое может, с определенной долей вероятности, в условиях испытания как произойти, так и не произойти; отдельный исход (результат) испытания. См. Случайная величина. Случайный процесс … Начала современного естествознания
событие — Факт, состоящий в том, что нечто произошло или в проблемной области, или в среде, или в информационной системе. [ГОСТ 34.320 96] событие 1. См. Случайное событие. 2. В сетевом планировании и управлении — промежуточный или окончательный… … Справочник технического переводчика
Какие события называются случайными
Событиями являются и результаты различных опытов, наблюдений и измерений.
1) из ящика с разноцветными шарами наугад вытаскивают белый шар;
2) на один из приобретенных лотерейных билетов выпал выигрыш;
3) при бросании игральной кости выпала цифра 6.
События делятся на достоверные, случайные и невозможные.
Достоверным называется событие, если оно обязательно произойдет в данном испытании.
Случайным называется событие, если оно может произойти, но может и не произойти в данном испытании.
Невозможным называется событие, если оно не может произойти в данном испытании.
За единицу принимают вероятность достоверного события, а вероятность невозможного события считают равной нулю. Тогда вероятность Р любого события А удовлетворяет неравенству:
Несовместными называются события, если появление одного из них
Пример. Опыт состоит в подбрасывании монеты, событие А – выпадение орла, событие В – выпадение решки. Эти события несовместны, равновозможны и единственно возможны.
Равновозможными называются события, если ни одно из них не является более возможным, чем другое.
Единственно возможными называются события, если в результате опыта хотя бы одно из них обязательно наступит. Говорят, что единственно возможные события образуют полную группу событий .
Рассмотрим классический метод определения вероятности некоторого случайного события. Пусть в результате некоторого опыта могут наступить события А1, А2, А3, …, Аn (элементарные исходы опыта), которые являются:
1)единственно возможными, т.е. в результате опыта хотя бы одно из них обязательно наступит;
2)несовместными, т.е. появление одного из них исключает появление всех остальных;
3)равновозможными, т.е. не существует никаких причин, в связи с которыми одно из событий появлялось бы чаще, чем остальные.
Пусть при появлении некоторых из этих событий наступает событие А. Обозначим число таких событий k (k≤n). А при появлении остальных (n-k) событий событие А не наступает. Говорят, что k событий (элементарных исходов), при которых появляется событие А, благоприятствуют событию А, а остальные (n-k) событий не благоприятствуют ему.
Вероятностью события А называется отношение числа k элементарных исходов, благоприятствующих этому событию, к общему числу элементарных исходов испытания n, если они равновозможны, несовместны и единственно возможны.
Какие события называются случайными
Раздел 1. Основные понятия теории вероятностей
Классификация событий на возможные, вероятные и случайные. Понятия простого и сложного элементарного события. Операции над событиями. Классическое определение вероятности случайного события и её свойства. Элементы комбинаторики в теории вероятностей. Геометрическая вероятность. Аксиомы теории вероятностей.
Классификация событий
Одним из основных понятий теории вероятностей является понятие события. Под событием понимают любой факт, который может произойти в результате опыта или испытания. Под опытом, или испытанием, понимается осуществление определённого комплекса условий.
– попадание в цель при выстреле из орудия (опыт — произведение выстрела; событие — попадание в цель);
– выпадение двух гербов при трёхкратном бросании монеты (опыт — трёхкратное бросание монеты; событие — выпадение двух гербов);
– появление ошибки измерения в заданных пределах при измерении дальности до цели (опыт — измерение дальности; событие — ошибка измерения).
Можно привести бесчисленное множество подобных примеров. События обозначаются заглавными буквами латинского алфавита и т.д.
Различают события совместные и несовместные. События называются совместными, если наступление одного из них не исключает наступления другого. В противном случае события называются несовместными. Например, подбрасываются две игральные кости. Событие — выпадание трех очков на первой игральной кости, событие
— выпадание трех очков на второй кости.
и
— совместные события. Пусть в магазин поступила партия обуви одного фасона и размера, но разного цвета. Событие
— наудачу взятая коробка окажется с обувью черного цвета, событие
— коробка окажется с обувью коричневого цвета,
и
— несовместные события.
Событие называется достоверным, если оно обязательно произойдет в условиях данного опыта.
Событие называется невозможным, если оно не может произойти в условиях данного опыта. Например, событие, заключающееся в том, что из партии стандартных деталей будет взята стандартная деталь, является достоверным, а нестандартная — невозможным.
Событие называется возможным, или случайным, если в результате опыта оно может появиться, но может и не появиться. Примером случайного события может служить выявление дефектов изделия при контроле партии готовой продукции, несоответствие размера обрабатываемого изделия заданному, отказ одного из звеньев автоматизированной системы управления.
События называются равновозможными, если по условиям испытания ни одно из этих событий не является объективно более возможным, чем другие. Например, пусть магазину поставляют электролампочки (причем в равных количествах) несколько заводов-изготовителей. События, состоящие в покупке лампочки любого из этих заводов, равновозможны.
Важным понятием является полная группа событий. Несколько событий в данном опыте образуют полную группу, если в результате опыта обязательно появится хотя бы одно из них. Например, в урне находится десять шаров, из них шесть шаров красных, четыре белых, причем пять шаров имеют номера. — появление красного шара при одном извлечении,
— появление белого шара,
— появление шара с номером. События
образуют полную группу совместных событий.
Введем понятие противоположного, или дополнительного, события. Под противоположным событием понимается событие, которое обязательно должно произойти, если не наступило некоторое событие
. Противоположные события несовместны и единственно возможны. Они образуют полную группу событий. Например, если партия изготовленных изделий состоит из годных и бракованных, то при извлечении одного изделия оно может оказаться либо годным — событие
, либо бракованным — событие
.
Операции над событиями
При разработке аппарата и методики исследования случайных событий в теории вероятностей очень важным является понятие суммы и произведения событий.
Суммой, или объединением, нескольких событий называется событие, состоящее в наступлении хотя бы одного из этих событий.
Сумма событий
обозначается так:
.
Например, если событие есть попадание в цель при первом выстреле, событие
— при втором, то событие
есть попадание в цель вообще, безразлично, при каком выстреле — первом, втором или при обоих вместе.
Произведением, или пересечением, нескольких событий называется событие, состоящее в совместном появлении всех этих событий.
Произведение событий
обозначается
.
Например, если событие есть попадание в цель при первом выстреле, событие
— при втором, то событие
состоит в том, что в цель попали при обоих выстрелах.
Понятия суммы и произведения событий имеют наглядную геометрическую интерпретацию. Пусть событие состоит в попадании точки в область
, событие
— в попадании в область
, тогда событие
состоит в попадании точки в область, заштрихованную на рис. 1, и событие
— в попадании точки в область, заштрихованную на рис. 2.
Классическое определение вероятности случайного события
Для количественного сравнения событий по степени возможности их появления вводится числовая мера, которая называется вероятностью события.
Вероятностью события называется число, являющееся выражением меры объективной возможности появления события.
Вероятность события будем обозначать символом
.
Вероятность события равна отношению числа случаев
, благоприятствующих ему, из общего числа
единственно возможных, равновозможных и несовместных случаев к числу
, т. е.
Это есть классическое определение вероятности. Таким образом, для нахождения вероятности события необходимо, рассмотрев различные исходы испытания, найти совокупность единственно возможных, равновозможных и несовместных случаев, подсчитать общее их число , число случаев
, благоприятствующих данному событию, и затем выполнить расчет по формуле (1.1).
Из формулы (1.1) следует, что вероятность события является неотрицательным числом и может изменяться в пределах от нуля до единицы в зависимости от того, какую долю составляет благоприятствующее число случаев от общего числа случаев:
.
Свойства вероятности
Свойство 1. Если все случаи являются благоприятствующими данному событию , то это событие обязательно произойдет. Следовательно, рассматриваемое событие является достоверным, а вероятность его появления
, так как в этом случае
Свойство 2. Если нет ни одного случая, благоприятствующего данному событию , то это событие в результате опыта произойти не может. Следовательно, рассматриваемое событие является невозможным, а вероятность его появления
, так как в этом случае
:
Свойство 3. Вероятность наступления событий, образующих полную группу, равна единице.
Свойство 4. Вероятность наступления противоположного события определяется так же, как и вероятность наступления, события
:
где — число случаев, благоприятствующих появлению противоположного события
. Отсюда вероятность наступления противоположного события
равна разнице между единицей и вероятностью наступления события
:
Важное достоинство классического определения вероятности события состоит в том, что с его помощью вероятность события можно определить, не прибегая к опыту, а исходя из логических рассуждений.
Пример 1. Набирая номер телефона, абонент забыл одну цифру и набрал ее наудачу. Найти вероятность того, что набрана нужная цифра.
Решение. Обозначим событие, состоящее в том, что набрана нужная цифра. Абонент мог набрать любую из 10 цифр, поэтому общее число возможных исходов равно 10. Эти исходы единственно возможны (одна из цифр набрана обязательно) и равновозможны (цифра набрана наудачу). Благоприятствует событию
лишь один исход (нужная цифра лишь одна). Искомая вероятность равна отношению числа исходов, благоприятствующих событию, к числу всех исходов:
.
Элементы комбинаторики
В теории вероятностей часто используют размещения, перестановки и сочетания. Если дано множество , то размещением (сочетанием) из
элементов по
называется любое упорядоченное (неупорядоченное) подмножество
элементов множества
. При
размещение называется перестановкой из
элементов.
Пусть, например, дано множество . Размещениями из трех элементов этого множества по два являются
,
,
,
,
,
; сочетаниями —
,
,
.
Два сочетания различаются хотя бы одним элементом, а размещения различаются либо самими элементами, либо порядком их следования. Число сочетаний из элементов по
вычисляется по формуле
,
есть число размещений из элементов по
;
— число перестановок из
элементов.
Пример 2. В партии из 10 деталей имеется 7 стандартных. Найти вероятность того, что среди взятых наудачу 6 деталей ровно 4 стандартных.
Решение. Общее число возможных исходов испытания равно числу способов, которыми можно извлечь 6 деталей из 10, т. е. равно — числу сочетаний из 10 элементов по 6. Число исходов, благоприятствующих событию
(среди 6 взятых деталей ровно 4 стандартных), определяем так: 4 стандартные детали можно взять из 7 стандартных деталей
способами; при этом остальные
детали должны быть нестандартными; взять же 2 нестандартные детали из
нестандартных деталей можно
способами. Следовательно, число благоприятствующих исходов равно
. Исходная вероятность равна отношению числа исходов, благоприятствующих событию, к числу всех исходов:
Статистическое определение вероятности
Формулу (1.1) используют для непосредственного вычисления вероятностей событий только тогда, когда опыт сводится к схеме случаев. На практике часто классическое определение вероятности неприменимо по двум причинам: во-первых, классическое определение вероятности предполагает, что общее число случаев должно быть конечно. На самом же деле оно зачастую не ограничено. Во-вторых, часто невозможно представить исходы опыта в виде равновозможных и несовместных событий.
Частота появления событий при многократно повторяющихся Опытах имеет тенденцию стабилизироваться около какой-то постоянной величины. Таким образом, с рассматриваемым событием можно связать некоторую постоянную величину, около которой группируются частоты и которая является характеристикой объективной связи между комплексом условий, при которых проводятся опыты, и событием.
Вероятностью случайного события называется число, около которого группируются частоты этого события по мере увеличения числа испытаний.
Это определение вероятности называется статистическим.
Преимущество статистического способа определения вероятности состоит в том, что он опирается на реальный эксперимент. Однако его существенный недостаток заключается в том, что для определения вероятности необходимо выполнить большое число опытов, которые очень часто связаны с материальными затратами. Статистическое определение вероятности события хотя и достаточно полно раскрывает содержание этого понятия, но не дает возможности фактического вычисления вероятности.
Геометрическая вероятность
В классическом определении вероятности рассматривается полная группа конечного числа равновозможных событий. На практике очень часто число возможных исходов испытаний бесконечно. В таких случаях классическое определение вероятности неприменимо. Однако иногда в подобных случаях можно воспользоваться другим методом вычисления вероятности. Для определенности ограничимся двумерным случаем.
Пусть на плоскости задана некоторая область площадью
, в которой содержится другая область
площадью
(рис. 3). В область
наудачу бросается точка. Чему равна вероятность того, что точка попадет в область
? При этом предполагается, что наудачу брошенная точка может попасть в любую точку области
, и вероятность попасть в какую-либо часть области
пропорциональна площади части и не зависит от ее расположения и формы. В таком случае вероятность попадания в область
при бросании наудачу точки в область
Таким образом, в общем случае, если возможность случайного появления точки внутри некоторой области на прямой, плоскости или в пространстве определяется не положением этой области и ее границами, а только ее размером, т. е. длиной, площадью или объемом, то вероятность попадания случайной точки внутрь некоторой области определяется как отношение размера этой области к размеру всей области, в которой может появляться данная точка. Это есть геометрическое определение вероятности.
Пример 3. Круглая мишень вращается с постоянной угловой скоростью. Пятая часть мишени окрашена в зеленый цвет, а остальная — в белый (рис. 4). По мишени производится выстрел так, что попадание в мишень — событие достоверное. Требуется определить вероятность попадания в сектор мишени, окрашенный в зелёный цвет.
Решение. Обозначим — «выстрел попал в сектор, окрашенный в зелёный цвет». Тогда
. Вероятность получена как отношение площади части мишени, окрашенной в зелёный цвет, ко всей площади мишени, поскольку попадания в любые части мишени равновозможны.
Аксиомы теории вероятностей
Из статистического определения вероятности случайного события следует, что вероятность события есть число, около которого группируются частоты этого события, наблюдаемые на опыте. Поэтому аксиомы теории вероятностей вводятся так, чтобы вероятность события обладала основными свойствами частоты.
Аксиома 1. Каждому событию соответствует определенное число
, удовлетворяющее условию
и называемое его вероятностью.
Аксиома 2. Вероятность достоверного события равна единице.
Аксиома 3. Вероятность невозможного события равна нулю.