какие структуры клетки видны только в электронный микроскоп

§ 11. Методы изучения клетки

1. Любую ли клетку можно рассмотреть в световой микроскоп?

В световой микроскоп можно рассмотреть клетки, размеры которых не менее 350 нм. При меньших размерах клетки световая волна не отражается от объекта, а огибает его.

2. Чем электронный микроскоп отличается от светового?

Из-за микроскопических размеров клетку невозможно было увидеть до изобретения увеличительных приборов. Первым применил изобретенный световой микроскоп и увидел ячеистую структуру тонкого среза пробки англичанин Р. Гук в 1665 г. Ячейки (это были клеточные стенки мертвых клеток) он назвал клетками. Световая микроскопия основана на прохождении пучка света через тонкий прозрачный или полупрозрачный объект и попадании затем в систему линз окуляра и объектива. Линзы увеличивают объект исследования. Однако световой микроскоп не позволяет видеть объекты менее 350 нм. Изобретенный в 30-х гг. XX в. электронный микроскоп дает возможность видеть структуры клетки размером до 0,1 нм. Принцип устройства электронного микроскопа такой же, как и светового, но вместо пучка света в нем идетпоток электронов и фокусируется он не линзами, а электромагнитами.

3. Можно ли с помощью электронного микроскопа увидеть бактерию диаметром 20 мкм?

Это очень крупная бактерия. Ее можно увидеть даже в световой микроскоп.

4. Для чего проводят ультрацентрифугирование? На каких закономерностях основан этот метод?

Клеточные органоиды различны по размерам. Ультрацентрифугирование проводят с целью получить достаточно большую послойно разделенную массу органоидов одного вида для последующего исследования их химического состава, структуры и т. п. Метод основан на разной скорости осаждения органоидов разного размера, массы и плотности под действием центробежной силы, возникающей при вращении разрушенных клеток в центрифуге на очень большой скорости.

5. В чем состоит сущность методов цито- и гистохимии?

В основе методов цито- и гистохимии лежит избирательное действие реактивов и красителей на определенные химические вещества, что позволяет изучить нахождение этих веществ в клетке.

6. Разрешающая способность световых микроскопов равна приблизительно половине длины волны света, используемого для освещения объекта? Как вы думаете, можно ли в световой микроскоп наблюдать рибосомы, микротрубочки (толщина около 25 нм), эндоплазма-тическую сеть (толщина мембраны около 6 нм)?

В световой микроскоп можно видеть структуру клетки размером не менее 350 нм, следовательно, указанные в вопросе структуры клетки нельзя увидеть в световой микроскоп, поскольку размеры их меньше.

Источник

Клеточная теория, мужики, методы

1. Все живые организмы на Земле состоят из клеток, сходных по строению, химическому составу и функционированию. Это говорит о родстве (общем происхождении) всех живых организмов на Земле (о единстве органического мира).

3. Все новые дочерние клетки образуются из уже существующих материнских клеток путем деления.

4. Рост и развитие многоклеточного организма происходит за счет роста и размножения (путем митоза) одной или нескольких исходных клеток.

Мужики

Левенгук открыл живые клетки (сперматозоиды, эритроциты, инфузории, бактерии).

Шлейден и Шванн вывели первую клеточную теорию («Все живые организмы на Земле состоят из клеток, сходных по строению»).

Вирхов добавил положение «Клетка происходит только от клетки».

Методы

1. Световой микроскоп увеличивает до 2000 раз (обычный школьный – от 100 до 500 раз). Видно ядро, хлоропласты, вакуоль. Можно изучать процессы, происходящие в живой клетке (митоз, движение органоидов и т.п.).

2. Электронный микроскоп увеличивает до 10 7 раз, что позволяет изучать микроструктуру органоидов. Метод не работает с живыми объектами.

3. Ультрацентрифуга. Клетки разрушаются и помещаются в центрифугу. Компоненты клетки разделаются по плотности (самые тяжелые части собираются на дне пробирки, самые легкие – на поверхности). Метод позволяет избирательно выделять и изучать органоиды.

Еще можно почитать

Задания части 1

Выберите один, наиболее правильный вариант. Какой метод позволяет избирательно выделять и изучать органоиды клетки
1) окрашивание
2) центрифугирование
3) микроскопия
4) химический анализ

Выберите один, наиболее правильный вариант. В связи с тем, что в любой клетке происходит питание, дыхание, образование продуктов жизнедеятельности, ее считают единицей
1) роста и развития
2) функциональной
3) генетической
4) строения организма

Выберите один, наиболее правильный вариант. Клетку считают единицей роста и развития организмов, так как
1) она имеет сложное строение
2) организм состоит из тканей
3) число клеток увеличивается в организме путем митоза
4) в половом размножении участвуют гаметы

Выберите один, наиболее правильный вариант. Клетка – единица роста и развития организма, так как
1) в ней имеется ядро
2) в ней хранится наследственная информация
3) она способна к делению
4) из клеток состоят ткани

КЛЕТОЧНАЯ ТЕОРИЯ ПОЛОЖЕНИЯ
1. Выберите два верных ответа из пяти и запишите цифры, под которыми они указаны. Укажите формулировку одного из положений клеточной теории

1) Оболочка грибной клетки состоит из углеводов
2) В клетках животных отсутствует клеточная стенка
3) Клетки всех организмов содержат ядро
4) Клетки организмов сходны по химическому составу
5) Новые клетки образуются путем деления исходной материнской клетки

2. Выберите три варианта. Какие положения содержит клеточная теория?
1) Новые клетки образуются в результате деления материнской клетки
2) В половых клетках содержится гаплоидный набор хромосом
3) Клетки сходны по химическому составу
4) Клетка – единица развития всех организмов
5) Клетки тканей всех растений и животных одинаковы по строению
6) Все клетки содержат молекулы ДНК

3. Выберите три верных ответа из шести и запишите в таблицу цифры, под которыми они указаны. Какие из перечисленных положений относятся к современной клеточной теории?
1) Все организмы и вирусы состоят из клеток.
2) Растения и животные состоят из клеток.
3) Клетка – это структурно-функциональная единица живого, представляющая собой элементарную живую систему.
4) Химический состав и строение структурных единиц всех живых организмов сходны.
5) Сходное клеточное строение организмов, населяющих Землю, свидетельствует о единстве их происхождения.
6) Клетки возникают путём новообразований из неклеточного вещества.

КЛЕТОЧНАЯ ТЕОРИЯ ВЫВОДЫ
1. Выберите три варианта. Основные положения клеточной теории позволяют сделать выводы о

1) биогенной миграции атомов
2) родстве организмов
3) происхождении растений и животных от общего предка
4) появлении жизни на Земле около 4,5 млрд. лет назад
5) сходном строении клеток всех организмов
6) взаимосвязи живой и неживой природы

2. Выберите три варианта. Основные положения клеточной теории позволяют сделать выводы о
1) влиянии среды на приспособленность
2) родстве организмов
3) происхождении растений и животных от общего предка
4) развитии организмов от простого к сложному
5) сходном строении клеток всех организмов
6) возможности самозарождения жизни из неживой материи

4. Определите два признака, «выпадающих» из общего списка, и запишите в ответ цифры, под которыми они указаны. Основные положения клеточной теории позволяют сделать вывод о
1) биогенной миграции атомов
2) родстве организмов
3) происхождении растений и животных от общего предка
4) появлении жизни на Земле около 4,5 млрд. лет назад
5) сходном строении клеток всех организмов

МУЖИКИ
1. Выберите два верных ответа из пяти и запишите цифры, под которыми они указаны. В разработку клеточной теории свой вклад внесли:

1) Опарин
2) Вернадский
3) Шлейден и Шванн
4) Мендель
5) Вирхов

2. Выберите три верных ответа из шести и запишите цифры, под которыми они указаны. Основные постулаты клеточной теории сформулировали
1) Р. Гук
2) Т. Шванн
3) М. Шлейден
4) Р. Вирхов
5) А. Левенгук
6) Ч. Дарвин

МИКРОСКОП СВЕТОВОЙ
1. Выберите два верных ответа из пяти и запишите цифры, под которыми они указаны. С помощью световой микроскопии в растительной клетке можно различить:

1) эндоплазматическую сеть
2) микротрубочки
3) вакуоль
4) клеточную стенку
5) рибосомы

2. Выберите два верных ответа из пяти и запишите цифры, под которыми они указаны. В световой микроскоп можно увидеть
1) деление клетки
2) репликацию ДНК
3) транскрипцию
4) фотолиз воды
5) хлоропласты

3. Выберите два верных ответа из пяти и запишите цифры, под которыми они указаны. При изучении растительной клетки под световым микроскопом можно увидеть
1) клеточную мембрану и аппарат Гольджи
2) оболочку и цитоплазму
3) ядро и хлоропласты
4) рибосомы и митохондрии
5) эндоплазматическую сеть и лизосомы

МИКРОСКОП ЭЛЕКТРОННЫЙ
Выберите два верных ответа из пяти и запишите цифры, под которыми они указаны. Каково преимущество использования электронной микроскопии перед световой?

1) большее разрешение
2) возможность наблюдать живые объекты
3) дороговизна метода
4) сложность приготовления препарата
5) возможность изучать макромолекулярные структуры

Выберите два верных ответа из пяти и запишите цифры, под которыми они указаны. Какие органоиды были обнаружены в клетке с помощью электронного микроскопа?
1) рибосомы
2) ядра
3) хлоропласты
4) микротрубочки
5) вакуоли

ЦЕНТРИФУГИРОВАНИЕ
Выберите два верных ответа из пяти и запишите цифры, под которыми они указаны. Метод центрифугирования позволяет

1) определить качественный и количественный состав веществ в клетке
2) определить пространственную конфигурацию и некоторые физические свойства макромолекул
3) очистить макромолекулы, выведенные из клетки
4) получить объемное изображение клетки
5) разделить органоиды клетки

=============
Установите правильную последовательность этапов развития цитологии. Запишите соответствующую последовательность цифр.

1) изобретение электронного микроскопа
2) открытие рибосом
3) изобретение светового микроскопа
4) утверждение Р. Вирхова о появлении каждой клетки от клетки
5) появление клеточной теории Т. Шванна и М. Шлейдена
6) первое употребление термина «клетка» Р. Гуком

Источник

Органоиды, обнаруженные с помощью электронного микроскопа

какие структуры клетки видны только в электронный микроскоп. Смотреть фото какие структуры клетки видны только в электронный микроскоп. Смотреть картинку какие структуры клетки видны только в электронный микроскоп. Картинка про какие структуры клетки видны только в электронный микроскоп. Фото какие структуры клетки видны только в электронный микроскопОрганоиды, или органеллы, – это специальные структуры клетки, которые выполняют жизненно важные для нее функции. Эти структуры подобны органам в человеческом организме, отсюда и взялось их название. Органоидов достаточно много, поэтому перечислим лишь некоторые из них: цитоплазма, митохондрии, аппарат Гольджи, лизосомы, вакуоли.

В данной статье мы рассмотрим органоиды, обнаруженные с помощью электронного микроскопа. У самого мощного светового микроскопа разрешающая способность объектива составляет примерно 200 нм. При этом сила разрешения определяется минимальным размером частицы, которую можно разглядеть в микроскоп. Именно поэтому до изобретения электронного микроскопа ряд клеточных органоидов оставался скрытым от глаз исследователей.

Какие органоиды можно увидеть в световой микроскоп? Только самые крупные, если можно так охарактеризовать мельчайшие частицы. Можно разглядеть пластиды и ядро клетки. С появлением электронного микроскопа представления ученых о клетке и ее органоидах существенно изменились, ведь его разрешающая способность достигает значения в 0,1 нм.

Какие органоиды обнаружены с помощью электронного микроскопа

Как выяснилось, у клетки есть и другие немаловажные элементы. В частности, это такие органеллы (постоянные компоненты клетки), как митохондрии и рибосомы, а также части структуры цитоплазмы (аппарат Гольджи, эндоплазматическая сеть). Самыми маленькими из обнаруженных электронным микроскопом органелл клетки считаются рибосомы.

Исследования клеточной структуры, проведенные с использованием электронного микроскопа, наглядно продемонстрировали, что клетку можно считать сложной системой, состоящей из отдельных органоидов, которые невидимы в световой микроскоп.

4glaza.ru
Февраль 2018

Использование материала полностью для общедоступной публикации на носителях информации и любых форматов запрещено. Разрешено упоминание статьи с активной ссылкой на сайт www.4glaza.ru.

Производитель оставляет за собой право вносить любые изменения в стоимость, модельный ряд и технические характеристики или прекращать производство изделия без предварительного уведомления.

Источник

Электронный микроскоп и клетка

какие структуры клетки видны только в электронный микроскоп. Смотреть фото какие структуры клетки видны только в электронный микроскоп. Смотреть картинку какие структуры клетки видны только в электронный микроскоп. Картинка про какие структуры клетки видны только в электронный микроскоп. Фото какие структуры клетки видны только в электронный микроскоп

Человеческий глаз представляет собой превосходную оптическую систему. С его помощью мы видим отдаленные миллионами километров планеты и звезды; можем рассмотреть мельчайшие частички пыли, пляшущие в воздухе в луче света. Однако во многих случаях, когда надо глубже разобраться в строении изучаемых предметов, глаз начинает изменять нам. Тогда на помощь приходят оптические приборы. С момента, когда живший в семнадцатом веке голландский торговец сукном Левенгук дополнил глаз набором увеличительных стекол своего примитивного микроскопа, и до сегодняшнего дня ученые и изобретатели трудятся над изготовлением приборов, позволяющих глубже заглянуть в мир мельчайших частиц. Долгое время все усилия были направлены на совершенствование оптических приборов.

С помощью современного светового микроскопа можно получить изображение объекта, увеличенного до двух тысяч раз. Можно сделать микроскоп, дающий и значительно большие увеличения. Но при этом выигрыша в выявлении новых деталей мы не получим, так как это — чисто масштабное увеличение, а не полезное. Предел полезного увеличения был достигнут для светового микроскопа еще в конце 19-го столетия. Он определяется так называемым разрешаемым расстоянием, то есть расстоянием между двумя наиболее близко расположенными точками, видимыми раздельно. Обычно пользуются обратным отношением этой величины, называемой разрешающей способностью. У современных микроскопов разрешаемое расстояние зависит от длины волны света и не может быть менее 0,15—0,2 микрона или 1 500—2 000 ангстрем. Это составляет примерно половину длины волны света. Чтобы убедится в этом можете попробовать сами купить микроскоп мпб 2.

Единственный путь дальнейшего увеличения разрешающей способности микроскопа — уменьшить длину волны излучения, применяемого для получения изображения. Как известно, световой спектр представляет гамму различных длин волн; самая короткая — у фиолетовой и ультрафиолетовой части. Поэтому, используя в микроскопе особые лампы с ультрафиолетовым излучением, возможно несколько улучшить разрешение.

Еще более выгодно было бы использовать лучи Рентгена, длина волны которых во много раз меньше. Теоретически с помощью «рентгеновского микроскопа» можно было бы рассматривать молекулы и даже атомы. К сожалению, разрешение созданных моделей таких микроскопов пока не больше, чем у светового. Выход из создавшегося тупика был найден в другой области.

В 100 ТЫСЯЧ РАЗ МЕНЬШЕ

Еще во второй половине девятнадцатого века были построены приборы, послужившие в дальнейшем прообразом современных телевизоров и электронных микроскопов. Принцип их работы один: лоток электронов вызывает свечение люминофоров. На экране в месте, куда ударяет поток электронов, появляется яркая точка. В такого рода трубках удавалось получать даже своеобразные картинки, правда, скорее ради курьеза.

В 1924 году французский физик де Бройль обнаружил интересную особенность быстро летящих в вакууме электродов. Оказалось, что они обладают волновыми свойствами с длиной волны значительно меньшей, чем у лучей света. При этом длина волны зависит от скорости, а скорость движения электронов, как было давно известно, увеличивается при увеличении разности потенциалов между электродами. Немедленно встал вопрос о возможности применения потока электронов для получения изображения в микроскопе. Это было весьма соблазнительно, так как длина волны электронов меньше длины волны света примерно в 100 тысяч раз. Соответственно во столько же раз можно было бы увеличить разрешающую способность микроскопа.

Применить для такого микроскопа обычные, стеклянный линзы оказалось невозможным. Однако в связи с тем, что законы движения электронов в электрическом и магнитном поле до известной степени аналогичны закону преломления световой оптики, удалось создать магнитные поля такой формы, в которых пучок электронов ведет себя подобно пучку света, проходящему сквозь стеклянную линзу. Выходя из какой-то точки, они собираются вновь в другой точке или в фокусе. Такая линза дает возможность получить электронно-микроскопическое изображение объекта. На этом принципе и построен электронный микроскоп.

ВТОРЖЕНИЕ В ОБЛАСТЬ НЕВЕДОМОГО

Первые электронные микроскопы были построены к началу тридцатых годов, через несколько лет после открытия де Бройля, и очень быстро нашли широкое применение во всем мире.

К моменту создания электронного микроскопа в биологии, особенно в цитологии — науке, занимающейся изучением строения и функции клеток, наметился своеобразный разрыв. С помощью светового микроскопа можно было наблюдать и изучать то, что лежит в пределах 1000—2000 ангстрем. В то же время широко развернувшиеся работы биохимиков и биофизиков позволили заглянуть в мир молекул — частиц размеров менее-10—15 ангстрем. Средняя же область — между микроскопической цитологией и макромолекулярной химией — оставалась совершенно неизведанной.

Возникал вопрос: не таятся ли здесь новые структуры, имеющие определенную организацию? Изучить их особенно важно потому, что они связаны с характером макромолекул белков, нуклеиновых кислот и жиров, то есть веществ, от которых зависит большинство процессов, протекающих в клетках. На этом же макромолекулярном уровне возникают и первичные изменения при многих заболеваниях. Здесь таится разгадка многих неясных до настоящего времени болезней. Открыть эту неведомую область предстояло электронным микроскопистам.

какие структуры клетки видны только в электронный микроскоп. Смотреть фото какие структуры клетки видны только в электронный микроскоп. Смотреть картинку какие структуры клетки видны только в электронный микроскоп. Картинка про какие структуры клетки видны только в электронный микроскоп. Фото какие структуры клетки видны только в электронный микроскоп

ПЕРВЫЙ ЭТАП — НАКОПЛЕНИЕ ФАКТОВ

Изучение цитологических структур — элементов клетки — с помощью электронного микроскопа только начинается. Как во всякой развивающейся науке, этап подготовки методов исследования сменился периодом накопления фактов. Клетки растений и животных, грибов и бактерий, одноклеточные организмы в новом свете предстают перед учеными. Еще и сейчас многие органы и ткани почти совершенно не описаны и ждут своего исследователя.

Основным методом изучения внутреннего строения клеток и тканей в электроном микроскопе, так же как и в световом, является просмотр их «в проходящем свете». Только так удается выявить наиболее важные и интересные данные об их внутренней организации. Однако первые же опыты показали, что здесь исследователей ожидают большие трудности. Даже отдельные распластанные клетки настолько сильно поглощали электроны, что на экране большая их часть выглядела совершенно непрозрачной. Лишь по краям, в самых тонких участках, удавалось наблюдать отдельные клеточные структуры. Получение необычайно тонких, до 100 — 300 ангстрем толщиной, проницаемых для электронов срезов клеток — само по себе проблема! Она была решена.

Но возникли новые затруднения. Биологические объекты обычно имеют небольшую разницу в «электронной плотности» разных участков — обладают низким контрастом. Поэтому изображение даже сверхтонких срезов клетки оказывается нечетким. Контраст увеличивают искусственно, вводя в клетки вещества, задерживающие электроны. Для этой цели главным образом используются тяжелые металлы: золото, осмий, свинец, уран и т. д. Соединяясь с определенными веществами клетки, эти металлы выявляют их структуры, выполняя роль своеобразного «красителя».

Новую страну первым исследует географ. Он опишет озера, горы и низменности, протекающие там реки. На карте появятся леса, степи, даже ручьи. Но многое останется невыявленным. Страна лишь приоткрыла свои богатства. Нужно, чтобы вслед за географом прошли геологические партии, сделали глубокие шурфы и пробурили скважины. Тогда на карте возникнет россыпь полезных ископаемых, мимо которых, не заметив их, прошел географ, вооруженный лишь компасом и биноклем.

История исследования клетки в световом микроскопе насчитывает более ста лет. За это время были изучены и описаны разнообразные клеточные структуры, прослежены различные изменения клеток в процессе их деления и роста, перестройки в измененных болезнью тканях. Известно, что клетки окружены оболочкой, внутри которой заключена жидкая цитоплазма и центрально расположенное ядро. Известно, что в цитоплазме, кроме гомогенного (или основного) вещества, находятся различные включения, в числе которых имеются так называемые органоиды. К ним относятся, например, митохондрии.

Митохондрии встречаются почти во всех клетках, причем иногда в огромном количестве. Химики определили, что митохондрии содержат сложный состав ферментов и играют огромную роль во многих процессах клетки. Но вся эта «фабрика», вернее, «химический завод», в световом микроскопе выглядела более чем просто: в виде маленькой точки или, в лучшем случае, черной палочки. Как же там действует сложнейший комплекс ферментов? Где они размещаются?

Посмотрим на митохондрию в электронный микроскоп. Она уже не похожа на простое зернышко или палочку. Перед нами сложная система, состоящая из двойной оболочки, окружающей удлиненное тело; внутри правильными рядами расположены многочисленные, также двойные перегородки. Вещество, лежащее между перегородками, имеет определенные свойства, отличающие его от окружающей цитоплазмы. Более того: митохондрии у разных животных (и даже у одного организма, но в разных тканях) также различны. У некоторых насекомых, например, митохондрии округлой, а не вытянутой формы. Перегородки заменяются гребнями, то радиусам отходящими внутрь от оболочки; вместо пластинок-гребней могут быть трубочки, похожие на сильно вытянутые пальцы от резиновой перчатки.

Но во всех случаях внутренние перегородки, будь-то гребни или трубочки, построены из тонких (около 150 ангстрем) двойных пластинок — мембран. Такая общность строения объясняется тем, что роль митохондрии одинакова: осуществление определенных ферментных реакций.

При исследовании «вглубь» по-иному предстало и основное вещество цитоплазмы клеток. В световом микроскопе оно выглядело по-разному. Дело в том, что живая клетка при изучении обычно фиксируется — убивается. При этом внутреннее строение ее в той или иной степени нарушается: иногда становится бесструктурным, иногда грубозернистым, нередко заполняется массой пузырьков, так как происходит свертывание белков.

Совсем иную картину дает электронный микроскоп: перед нами целая сеть нитей, трубочек, пузырьков. Все они ограничены тончайшими (примерно такими же, как у митохондрий) мембранами, часто усеянными мелкими зернышками. Эти структуры, получившие название эргастоплазменной сети, впервые представ перед исследователями, вызвали массу споров. Многие не верили в их реальность: настолько это было ново и неожиданно. Сейчас дискуссии постепенно затихают. Такие сети обнаружены почти во всех клетках. Начинает проясняться их важная роль. Установлена связь эргастоплазменной сети с особыми участками клетки — базофильными структурами.

Связь осуществляется через мелкие зернышки, усеивающие мембраны эргастоплазмы. Эти зернышки содержат одно из важнейших веществ клетки — рибонуклеиновую кислоту, которая играет активную роль в синтезе белка. Действительно, наиболее значительное скопление эргастоплазменной сети обнаруживается как раз в тех клетках, которые вырабатывают белки (например, поджелудочная железа).

какие структуры клетки видны только в электронный микроскоп. Смотреть фото какие структуры клетки видны только в электронный микроскоп. Смотреть картинку какие структуры клетки видны только в электронный микроскоп. Картинка про какие структуры клетки видны только в электронный микроскоп. Фото какие структуры клетки видны только в электронный микроскоп

На электронно-микроскопической фотографии среди массы беспорядочно расположенных пузырьков и канальцев эргастоплазменной сети наше внимание обращают группы парных мембран, лежащих правильными рядами. Это хорошо знакомый исследователям сетчатый аппарат Гольджи, который связывают с жизнедеятельностью клетки и ее функциями выделения. Впервые он был описан еще в 1898 году. И, тем не менее, в каждом отдельном случае возникал вопрос, имеем ли мы дело с аппаратом Гольджи или сетью структур, сходных по окраске. Электронно-микроскопическое исследование сразу вносит полную ясность. На фото видны пакеты парных мембран, вокруг которых располагаются отдельные крупные пузырьки, или вакуоли, более мелкие многочисленные вакуоли лежат внутри самих пакетов между пластинами мембраны.

Поражает интересная закономерность: в аппарате Гольджи и в митохондриях, в эргастоплазменной сети и в клеточных оболочках — всюду электронный микроскоп выявляет мембраны, довольно сходные между собой по толщине и по плотности. В чем дело?

Объясняют это тем, что именно мембраны — очень удачная система, где при наименьшем объеме возможно наилучшее взаимодействие. Молекулы вещества лежат здесь почти в один слой с окружающей цитоплазмой, включаются практически одновременно в реакцию обмена веществ.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *