какие существуют виды погрешности при измерениях спортивной метрологии

14. Виды погрешностей

14. Виды погрешностей

Выделяют следующие виды погрешностей:

1) абсолютная погрешность;

2) относительна погрешность;

3) приведенная погрешность;

4) основная погрешность;

5) дополнительная погрешность;

6) систематическая погрешность;

7) случайная погрешность;

8) инструментальная погрешность;

9) методическая погрешность;

10) личная погрешность;

11) статическая погрешность;

12) динамическая погрешность.

Погрешности измерений классифицируются по следующим признакам.

По способу математического выражения погрешности делятся на абсолютные погрешности и относительные погрешности.

По взаимодействию изменений во времени и входной величины погрешности делятся на статические погрешности и динамические погрешности.

По характеру появления погрешности делятся на систематические погрешности и случайные погрешности.

По характеру зависимости погрешности от влияющих величин погрешности делятся на основные и дополнительные.

По характеру зависимости погрешности от входной величины погрешности делятся на аддитивные и мультипликативные.

Абсолютная погрешность – это значение, вычисляемое как разность между значением величины, полученным в процессе измерений, и настоящим (действительным) значением данной величины.

Абсолютная погрешность вычисляется по следующей формуле:

где AQ n – абсолютная погрешность;

Q n – значение некой величины, полученное в процессе измерения;

Q 0 – значение той же самой величины, принятое за базу сравнения (настоящее значение).

Абсолютная погрешность меры – это значение, вычисляемое как разность между числом, являющимся номинальным значением меры, и настоящим (действительным) значением воспроизводимой мерой величины.

Относительная погрешность – это число, отражающее степень точности измерения.

Относительная погрешность вычисляется по следующей формуле:

какие существуют виды погрешности при измерениях спортивной метрологии. Смотреть фото какие существуют виды погрешности при измерениях спортивной метрологии. Смотреть картинку какие существуют виды погрешности при измерениях спортивной метрологии. Картинка про какие существуют виды погрешности при измерениях спортивной метрологии. Фото какие существуют виды погрешности при измерениях спортивной метрологии

Q 0 – настоящее (действительное) значение измеряемой величины.

Относительная погрешность выражается в процентах.

Приведенная погрешность – это значение, вычисляемое как отношение значения абсолютной погрешности к нормирующему значению.

Нормирующее значение определяется следующим образом:

1) для средств измерений, для которых утверждено номинальное значение, это номинальное значение принимается за нормирующее значение;

2) для средств измерений, у которых нулевое значение располагается на краю шкалы измерения или вне шкалы, нормирующее значение принимается равным конечному значению из диапазона измерений. Исключением являются средства измерений с существенно неравномерной шкалой измерения;

3) для средств измерений, у которых нулевая отметка располагается внутри диапазона измерений, нормирующее значение принимается равным сумме конечных численных значений диапазона измерений;

4) для средств измерения (измерительных приборов), у которых шкала неравномерна, нормирующее значение принимается равным целой длине шкалы измерения или длине той ее части, которая соответствует диапазону измерения. Абсолютная погрешность тогда выражается в единицах длины.

Погрешность измерения включает в себя инструментальную погрешность, методическую погрешность и погрешность отсчитывания. Причем погрешность отсчитывания возникает по причине неточности определения долей деления шкалы измерения.

Инструментальная погрешность – это погрешность, возникающая из—за допущенных в процессе изготовления функциональных частей средств измерения ошибок.

Методическая погрешность – это погрешность, возникающая по следующим причинам:

1) неточность построения модели физического процесса, на котором базируется средство измерения;

2) неверное применение средств измерений.

Субъективная погрешность – это погрешность возникающая из—за низкой степени квалификации оператора средства измерений, а также из—за погрешности зрительных органов человека, т. е. причиной возникновения субъективной погрешности является человеческий фактор.

Погрешности по взаимодействию изменений во времени и входной величины делятся на статические и динамические погрешности.

Статическая погрешность – это погрешность, которая возникает в процессе измерения постоянной (не изменяющейся во времени) величины.

Динамическая погрешность – это погрешность, численное значение которой вычисляется как разность между погрешностью, возникающей при измерении непостоянной (переменной во времени) величины, и статической погрешностью (погрешностью значения измеряемой величины в определенный момент времени).

По характеру зависимости погрешности от влияющих величин погрешности делятся на основные и дополнительные.

Основная погрешность – это погрешность, полученная в нормальных условиях эксплуатации средства измерений (при нормальных значениях влияющих величин).

Дополнительная погрешность – это погрешность, которая возникает в условиях несоответствия значений влияющих величин их нормальным значениям, или если влияющая величина переходит границы области нормальных значений.

Нормальные условия – это условия, в которых все значения влияющих величин являются нормальными либо не выходят за границы области нормальных значений.

Рабочие условия – это условия, в которых изменение влияющих величин имеет более широкий диапазон (значения влияющих не выходят за границы рабочей области значений).

Рабочая область значений влияющей величины – это область значений, в которой проводится нормирование значений дополнительной погрешности.

По характеру зависимости погрешности от входной величины погрешности делятся на аддитивные и мультипликативные.

Аддитивная погрешность – это погрешность, возникающая по причине суммирования численных значений и не зависящая от значения измеряемой величины, взятого по модулю (абсолютного).

Мультипликативная погрешность – это погрешность, изменяющаяся вместе с изменением значений величины, подвергающейся измерениям.

Надо заметить, что значение абсолютной аддитивной погрешности не связано со значением измеряемой величины и чувствительностью средства измерений. Абсолютные аддитивные погрешности неизменны на всем диапазоне измерений.

Значение абсолютной аддитивной погрешности определяет минимальное значение величины, которое может быть измерено средством измерений.

Значения мультипликативных погрешностей изменяются пропорционально изменениям значений измеряемой величины. Значения мультипликативных погрешностей также пропорциональны чувствительности средства измерений Мультипликативная погрешность возникает из—за воздействия влияющих величин на параметрические характеристики элементов прибора.

Погрешности, которые могут возникнуть в процессе измерений, классифицируют по характеру появления. Выделяют:

1) систематические погрешности;

2) случайные погрешности.

В процессе измерения могут также появиться грубые погрешности и промахи.

Систематическая погрешность – это составная часть всей погрешности результата измерения, не изменяющаяся или изменяющаяся закономерно при многократных измерениях одной и той же величины. Обычно систематическую погрешность пытаются исключить возможными способами (например, применением методов измерения, снижающих вероятность ее возникновения), если же систематическую погрешность невозможно исключить, то ее просчитывают до начала измерений и в результат измерения вносятся соответствующие поправки. В процессе нормирования систематической погрешности определяются границы ее допустимых значений. Систематическая погрешность определяет правильность измерений средств измерения (метрологическое свойство).

Систематические погрешности в ряде случаев можно определить экспериментальным путем. Результат измерений тогда можно уточнить посредством введения поправки.

Способы исключения систематических погрешностей делятся на четыре вида:

1) ликвидация причин и источников погрешностей до начала проведения измерений;

2) устранение погрешностей в процессе уже начатого измерения способами замещения, компенсации погрешностей по знаку, противопоставлениям, симметричных наблюдений;

3) корректировка результатов измерения посредством внесения поправки (устранение погрешности путем вычислений);

4) определение пределов систематической погрешности в случае, если ее нельзя устранить.

Ликвидация причин и источников погрешностей до начала проведения измерений. Данный способ является самым оптимальным вариантом, так как его использование упрощает дальнейший ход измерений (нет необходимости исключать погрешности в процессе уже начатого измерения или вносить поправки в полученный результат).

Для устранения систематических погрешностей в процессе уже начатого измерения применяются различные способы

Способ введения поправок базируется на знании систематической погрешности и действующих закономерностей ее изменения. При использовании данного способа в результат измерения, полученный с систематическими погрешностями, вносят поправки, по величине равные этим погрешностям, но обратные по знаку.

Способ замещения состоит в том, что измеряемая величина заменяется мерой, помещенной в те же самые условия, в которых находился объект измерения. Способ замещения применяется при измерении следующих электрических параметров: сопротивления, емкости и индуктивности.

Способ компенсации погрешности по знаку состоит в том, что измерения выполняются два раза таким образом, чтобы погрешность, неизвестная по величине, включалась в результаты измерений с противоположным знаком.

Способ противопоставления похож на способ компенсации по знаку. Данный способ состоит в том, что измерения выполняют два раза таким образом, чтобы источник погрешности при первом измерении противоположным образом действовал на результат второго измерения.

Случайная погрешность – это составная часть погрешности результата измерения, изменяющаяся случайно, незакономерно при проведении повторных измерений одной и той же величины. Появление случайной погрешности нельзя предвидеть и предугадать. Случайную погрешность невозможно полностью устранить, она всегда в некоторой степени искажает конечные результаты измерений. Но можно сделать результат измерения более точным за счет проведения повторных измерений. Причиной случайной погрешности может стать, например, случайное изменение внешних факторов, воздействующих на процесс измерения. Случайная погрешность при проведении многократных измерений с достаточно большой степенью точности приводит к рассеянию результатов.

Промахи и грубые погрешности – это погрешности, намного превышающие предполагаемые в данных условиях проведения измерений систематические и случайные погрешности. Промахи и грубые погрешности могут появляться из—за грубых ошибок в процессе проведения измерения, технической неисправности средства измерения, неожиданного изменения внешних условий.

Данный текст является ознакомительным фрагментом.

Продолжение на ЛитРес

Читайте также

Виды пиломатериалов

Виды пиломатериалов Чаще всего в магазинах и на лесобазах продается уже высушенная древесина, а сырая встречается довольно редко. В зависимости от того, что вы хотите сделать и на что вам понадобилась древесина, вы можете приобрести кряж (целые стволы дерева или длинные

Виды пиломатериалов

Виды пиломатериалов В зависимости от назначения элемента конструкции, для которого используется тот или иной пиломатериал, необходимо определять и его размеры:– для стропил, балок цокольных и междуэтажных перекрытий, а также проступей ступеней лестниц и наружных

Виды пиломатериалов

Виды пиломатериалов В зависимости от назначения элемента конструкции, для которого используется тот или иной пиломатериал, необходимо определять и его размеры:– для стропил, балок цокольных и междуэтажных перекрытий, а также проступей ступеней лестниц и наружных

Виды соединений

Виды соединений Все соединения, будь то плотничные или столярные, называются посадками, потому что в их основе лежит принцип насаживания детали с шипом на деталь с пазом. В зависимости от того, как плотно соприкасаются детали в креплении, все посадки разделяются на

5.4 Виды проборок

5.4 Виды проборок Проборки, применяемые в ткачестве очень разнообразны. Их разнообразие определяется соотношением трех величин: Ro переплетения, Rnp. и количеством ремизок К.Рассмотрим пример, когда Ro = К = Rnp. В этом случае нити основы подряд пробираются в каждую ремизку и

14. Виды погрешностей

14. Виды погрешностей Выделяют следующие виды погрешностей:1) абсолютная погрешность;2) относительна погрешность;3) приведенная погрешность;4) основная погрешность;5) дополнительная погрешность;6) систематическая погрешность;7) случайная

19. Методы определения и учета погрешностей

19. Методы определения и учета погрешностей Методы определения и учета погрешностей измерений используются для того, чтобы:1) на основании результатов измерений получить настоящее (действительное) значение измеряемой величины;2) определить точность полученных

6. Виды стандартов

6. Виды стандартов Выделяют несколько видов стандартов. Применение в конкретной ситуации того или иного стандарта определяется характерными чертами и спецификой объекта стандартизации.Основополагающие стандарты – нормативные документы, утвержденные для

19. Методы определения и учета погрешностей

19. Методы определения и учета погрешностей Методы определения и учета погрешностей измерений используются для того, чтобы:1) на основании результатов измерений получить настоящее (действительное) значение измеряемой величины;2) определить точность полученных

38. Виды стандартов

38. Виды стандартов Выделяют несколько видов стандартов.Основополагающие стандарты – нормативные документы, утвержденные для определенных областей науки, техники и производства, содержащие в себе общие положения, принципы, правила и нормы для данных областей. Этот тип

3. виды веревки

3. виды веревки Основная отличительная черта, определяющая вид данной веревки, ее динамические качества, которые в основном зависят от ее способности удлиняться под нагрузкой. Еще при конструировании веревки в зависимости от желаемых эксплуатационных свойств ее

6.1. Виды иллюстраций

6.1. Виды иллюстраций ОСТ 29.130—97 «Издания. Термины и определения» так опре–деляет термин «иллюстрация» – изображение, поясняющее или дополняющее основной текст, помещенное на страницах и других элементах материальной конструкции издания.По методу отображения

50. Причины начальных погрешностей

50. Причины начальных погрешностей Начальные погрешности в измерение могут вноситься по следующим причинам.1.Удельный вес:1) степень однородности среды нарушена вследствие нахождения в ней примесей (в том числе и растворимых газов; такие жидкостные среды в гидравлике

1.5. Виды искусства

1.5. Виды искусства В процессе исторического развития искусства сложились различные его виды. Эпохи наивысшего расцвета искусства свидетельствуют о том, что полнота отображения мира достигается одновременным расцветом всех искусств. Как известно. Виды искусства можно

Виды ремонта

Виды ремонта В результате работы автомобиля, детали и узлы постепенно изнашиваются, в результате чего меняются их технические характеристики: увеличиваются зазоры между сопряженными деталями, повышается расход эксплуатационных материалом (топлива, масла, воды и

Источник

Виды погрешностей

Выделяют следующие виды погрешностей:

Абсолютная погрешность – это значение, вычисляемое как разность между значением величины, полученным в процессе измерений, и настоящим (действительным) значением данной величины.

Абсолютная погрешность меры – это значение, вычисляемое как разность между числом, являющимся номинальным значением меры, и настоящим (действительным) значением воспроизводимой мерой величины.

Относительная погрешность – это число, отражающее степень точности измерения.

Приведенная погрешность – это значение, вычисляемое как отношение значения абсолютной погрешности к нормирующему значению.

Инструментальная погрешность – это погрешность, возникающая из-за допущенных в процессе изготовления функциональных частей средств измерения ошибок.

Субъективная погрешность – это погрешность возникающая из-за низкой степени квалификации оператора средства измерений, а также из-за погрешности зрительных органов человека, т. е. причиной возникновения субъективной погрешности является человеческий фактор.

Статическая погрешность – это погрешность, которая возникает в процессе измерения постоянной (не изменяющейся во времени) величины.

Динамическая погрешность – это погрешность, численное значение которой вычисляется как разность между погрешностью, возникающей при измерении непостоянной (переменной во времени) величины, и статической погрешностью (погрешностью значения измеряемой величины в определенный момент времени).

Аддитивная погрешность – это погрешность, возникающая по причине суммирования численных значений и не зависящая от значения измеряемой величины, взятого по модулю (абсолютного).

Мультипликативная погрешность – это погрешность, изменяющаяся вместе с изменением значений величины, подвергающейся измерениям.

Систематическая погрешность – это составная часть всей погрешности результата измерения, не изменяющаяся или изменяющаяся закономерно при многократных измерениях одной и той же величины.

Случайная погрешность – это составная часть погрешности результата измерения, изменяющаяся случайно, незакономерно при проведении повторных измерений одной и той же величины.

Источник

Спортивная метрология: тесты и методы измерений

Содержание

ОСНОВЫ СПОРТИВНОЙ МЕТРОЛОГИИ [ править | править код ]

Введение в предмет спортивной метрологии [ править | править код ]

Основы метрологии комплексного контроля [ править | править код ]

Подготовка спортсмена представляет собой управляемый процесс. Важнейшим ее атрибутом является обратная связь. Основу её содержания составляет комплексный контроль, который даёт тренерам возможность получать объективную информацию о проделанной работе и тех функциональных сдвигах, которые она вызвала. Это позволяет вносить необходимые коррективы в тренировочный процесс.

Комплексный контроль включает педагогический, медико-биологический и психологический разделы. Эффективный процесс подготовки возможен лишь при комплексном использовании всех разделов контроля.

Управление процессом подготовки спортсменов [ править | править код ]

Управление процессом подготовки спортсменов включает пять этапов [1] [2] :

Специалисты в области хоккея получают большой объём субъективной информации о подготовленности игроков в ходе тренировочной и соревновательной деятельности. Несомненно, тренерский штаб нуждается и в объективной информации об отдельных сторонах подготовленности, которую можно получить только в специально созданных стандартных условиях.

Эта задача может быть решена применением программы тестирования, состоящей из минимально возможного количества тестов, позволяющих получить максимум полезной и всесторонней информации.

Виды контроля [ править | править код ]

Основными видами педагогического контроля являются [1] [2] [3] [4] [5] :

«По содержанию и направленности различают следующие виды контроля:

Основы теории измерений [ править | править код ]

Шкалы измерений [ править | править код ]

Существует четыре основные шкалы измерений:

Таблица 1. Характеристики и примеры шкал измерений [1]

Объекты сгруппированы, а группы обозначены номерами. То, что номер одной группы больше или меньше другой, еще ничего не говорит об их свойствах, за исключением того, что они различаются

Тетрахорические и полихорические коэффициенты корреляции

Номер спортсмена Амплуа и т.д.

Числа, присвоенные объектам, отражают количество свойства, принадлежащего им. Возможно установление соотношения «больше» или «меньше»

Ранговая корреляция Ранговые критерии Проверка гипотез непараметрической статистики

Результаты ранжирования спортсменов в тесте

Существует единица измерений, при помощи которой объекты можно не только упорядочить, но и приписать им числа так, чтобы разные разности отражали разные различия в количестве измеряемого свойства. Нулевая точка произвольна и не указывает на отсутствие свойства

Все методы статистики кроме определения отношений

Температура тела, суставные углы и т.д.

Числа, присвоенные предметам, обладают всеми свойствами интервальной шкалы. На шкале существует абсолютный нуль, который указывает на полное отсутствие данного свойства у объекта. Отношение чисел, присвоенных объектам после измерений, отражают количественные отношения измеряемого свойства.

Все методы статистики

Длина и масса тела Сила движений Ускорение и т.п.

Точность измерений [ править | править код ]

В спорте наиболее часто применяются два типа измерений: прямое (искомое значение находится из опытных данных) и косвенное (искомое выводится на основании зависимости одной величины от других, подвергаемых измерению). К примеру, в тесте Купера дистанцию измеряют (прямой метод), а МПК получают методом расчёта (косвенный метод).

Согласно законам метрологии, любые измерения имеют погрешность. Задача свести её к минимуму. От точности измерения зависит объективность оценки; исходя из этого, знание точности измерений является обязательным условием.

Систематические и случайные ошибки измерений [ править | править код ]

Согласно теории ошибок, их подразделяют на систематические и случайные.

Величина первых всегда одинакова, если измерения проводятся одним и тем же методом с использованием одних и тех же приборов. Выделяют следующие группы систематических ошибок [1] :

Для устранения систематической погрешности измерительные устройства предварительно проверяют и сравнивают с показателями эталонов либо калибруют (определяется погрешность и величина поправок).

Случайными называются такие ошибки, которые предсказать заранее попросту невозможно. Их выявляют и учитывают с помощью теории вероятностей и математического аппарата.

Абсолютные и относительные ошибки измерений [ править | править код ]

Различие, равное разности между показателями измерительного устройства и истинным значением, является абсолютной погрешностью измерения (выражается в тех же единицах, что и измеряемая величина) [1] :

где х — абсолютная погрешность.

При проведении тестирования часто возникает необходимость в определении не абсолютной, а относительной погрешности:

Основные требования к тестам [ править | править код ]

Все тесты подразделяются на группы в зависимости от цели:

1) показатели, измеряемые в покое (длина и масса тела, ЧСС и т.д.);

2) стандартные тесты с использованием немаксимальной нагрузки (например, бег на тредбане 6 м/с в течение 10 минут). Отличительной чертой данных тестов является отсутствие мотивации на достижение максимально возможного результата. Результат зависит от способа задания нагрузки: к примеру, если она задаётся по величине сдвигов медико-биологических показателей (например, бег при ЧСС 160 уд/мин), то измеряются физические величины нагрузки (расстояние, время и т.п.) [9] и наоборот.

Стандартизация измерительных процедур [ править | править код ]

1) режим дня, предшествующий тестированию, должен протекать по одной схеме. Допускается проведение занятий исключительно восстановительной направленности;

2) разминка непосредственно перед тестированием должна быть идентичной;

3) желательно, чтобы тестирование проводили одни и те же специалисты, обладающие необходимыми знаниями, навыками и опытом;

5) схема выполнения теста должна быть неизменной от тестирования к тестированию. При использовании батареи тестов, направленной на оценку различных способностей, уместно использовать следующую последовательность:

а) тесты, не вызывающие утомление (антропометрия, состав тела, психологический контроль и т.д.);

б) координационные способности;

в) абсолютные силовые, скоростно-силовые способности, мощность (анаэробно-алактатный механизм энергообеспечения);

г) скоростные способности (анаэробно-алактатный механизм энергообеспечения);

д) скоростная и скоростно-силовая выносливость (анаэробно-гликолитический механизм энергообеспечения);

е) общая выносливость (аэробный механизм энергообеспечения);

6) интервалы отдыха между попытками и испытаниями обязаны быть до полного восстановления испытуемого:

а) между повторениями упражнений, не требующих максимальных усилий — не менее 2-3 минут;

б) между повторениями упражнений с максимальными усилиями — не менее 3-5 минут;

7) мотивация на достижение максимального результата. Достижение данного условия бывает достаточно затруднительным, особенно когда речь идёт о профессиональных спортсменах. Здесь всё во многом зависит от харизмы, лидерских качеств наставника и умения мотивировать своих подопечных.

Достижение перечисленных условий далеко не всегда возможно в реальной жизни. Однако, не смотря на это, специалисты, ответственные за проведение тестирования, должны приложить максимум усилий для их достижения.

Надёжность тестов [ править | править код ]

1) дисперсионный анализ — позволяет рассчитать коэффициент надёжности, а также определить степень влияния различных факторов на изменчивость результатов. Данный подход является довольно сложным;

2) второй метод определения надёжности тестов значительно проще. Здесь достаточно рассчитать коэффициент корреляции.

Таблица 2. Градация уровней надёжности [1]

Необходимо исключить из практики применение малонадёжных тестов, так как они приводят к ошибочной оценке измеряемого параметра.

Стабильность тестов [ править | править код ]

На стабильность измерений влияет содержание учебно-тренировочного процесса и динамика нагрузки. Кроме этого, определенное влияние оказывают: сложность теста, а также временной интервал между тестированиями.

Согласованность тестов [ править | править код ]

Эквивалентность тестов [ править | править код ]

Информативность тестов [ править | править код ]

1) Логический метод определения информативности тестов

Суть данного метода определения информативности тестов состоит в логическом (качественном) сопоставлении физиологических, биомеханических и других характеристик критерия и тестов.

2a) Эмпирический метод определения информативности тестов при наличии единичного измеряемого критерия

2б) Эмпирический метод определения информативности тестов при отсутствии единичного критерия

Такая ситуация может возникнуть, если поставлена задача составить батарею тестов для юных хоккеистов 11-13 лет. С учётом того, что такой контроль должен быть массовым, тесты должны отвечать следующим параметрам:

Под данные требования подходит множество тестов, но необходимо отобрать наиболее информативные:

Безопасность [ править | править код ]

Любое контрольное испытание должно проводиться в безопасных условиях. Площадка для тестирования и используемое оборудование должны быть заблаговременно проверены на исправность. Во время выполнения теста всё используемое пространство должно быть свободно от посторонних предметов.

Тестирование в полевых условиях должно проводиться в установленных температурных диапазонах [8] [42] (Таблица 3).

Таблица 3. Допустимые погодные условия при выполнении интенсивных

Основы теории оценок [ править | править код ]

Оценка — унифицированная мера успеха в каком-либо тесте или задании. Процесс оценивания состоит из следующих стадий [1] :

Основными задачами, решаемыми в ходе оценивания, являются [1] :

Самым популярным и простым способом «трансформации» результатов тестирования в оценки является метод ранжирования (Таблица 4):

Таблица 4. Ранжирование результатов тестов профессиональных хоккеистов

Лучший результат в тесте оценивается в 1 балл, каждый последующий на 1 балл больше. Несмотря на повсеместное использование данной методики оценки, её существенным минусом является несправедливость — так, в нашем примере в тесте «Становая тяга» различие между первым и вторым местом равняется 29 килограммам, а между вторым и третьим — 5.

какие существуют виды погрешности при измерениях спортивной метрологии. Смотреть фото какие существуют виды погрешности при измерениях спортивной метрологии. Смотреть картинку какие существуют виды погрешности при измерениях спортивной метрологии. Картинка про какие существуют виды погрешности при измерениях спортивной метрологии. Фото какие существуют виды погрешности при измерениях спортивной метрологии

Поэтому для того, чтобы процесс оценивания был более справедливым, разработаны специальные шкалы. На рисунке 1 в качестве примера представлены четыре вида шкал:

«Первая (рисунок 1, а) — пропорциональная шкала. При ее использовании равные приросты результатов в тесте поощряются равными приростами в баллах. Так, в этой шкале, как это видно из рисунка, уменьшение времени бега на 0,1 секунды оценивается в 20 очков. Их получит спортсмен, бежавший 100 м за 12,8 секунд и пробежавший эту дистанцию за 12,7 секунд, и спортсмен, улучшивший свой результат с 12,1 до 12 секунд.

Второй тип — прогрессирующая шкала (рисунок 1, б). Здесь, как это видно из рисунка, равные приросты результатов оцениваются по-разному. Чем выше абсолютные приросты, тем больше прибавка в оценке. Так, за улучшение результата в беге на 100 м с 12,8 до 12,7 секунд дается 20 очков, с 12,7 до 12,6 секунд — 30 очков.

Перечисленные шкалы применяются в соответствии с поставленными задачами. Так, к примеру, можно использовать регрессирующую шкалу, если стоит задача поддержать и мотивировать отстающих спортсменов. Сигмовидная же подойдёт для тренера, считающего, что атлет должен быть гармонично развит. Однако бытует и иной взгляд. Так, во многих видах спорта издавна ведутся споры, что приоритетнее — подтягивать отстающие качества или развивать свои «коронные» способности. Если тренер приверженец второго мнения, то ему больше подойдёт прогрессирующая шкала оценок.

Применение шкал оценки в практике [ править | править код ]

Стандартная шкала [ править | править код ]

«В основе ее лежит пропорциональная шкала (см. рисунок 1, а), а свое название она получила потому, что масштабом в ней служит стандартное (среднеквадратическое) отклонение. Наиболее распространена Т-шкала.

При ее использовании средний результат приравнивается к 50 очкам, а вся формула выглядит следующим образом:

Пересчитаем данные таблицы 4, применив эту формулу (Таблица 5).

Сравнение таблиц 4 и 5 подтверждает большую справедливость оценки по Т-шкале в сравнении с ранжированием. Так, два хоккеиста сменили прежнее место в группе (выделены). Если раньше разрыв между 1 и 2 местом составлял 1 балл, между 8 и 9 местом тоже 1 балл, то по новым оценкам — 9 и 5 баллов, соответственно.

Перцентильная шкала [ править | править код ]

Суть данной шкалы в том, что каждый испытуемый из команды (группы) получает за свой результат столько очков, сколько процентов спортсменов он опередил. Как следует из вышесказанного, оценка победителя всегда будет равнятся 100 баллам, а последнего — 0 баллов. Преимуществом использования данной шкалы является её простота и отсутствие формул, что несёт важное значение для тренеров-практиков. Единственное,

Таблица 5. Оценка результатов тестирования профессиональных хоккеистов

что здесь нужно считать — какое количество испытуемых укладывается в один интервал шкалы (перцентиль).

Шкала ГЦОЛИФКа [ править | править код ]

Все вышеперечисленные шкалы хороши для тестирования всей команды и сравнения её представителей в отдельности между собой. Однако, когда стоит задача оценить прогресс спортсмена при повторных тестированиях на разных этапах (например, перед началом этапа предсезонной подготовки и по его окончании), наилучшим образом подойдёт шкала ГЦОЛИФКа [1] :

Оценка в баллах= 100 • (1- (Лучший результат-Оцениваемый результат)/ (Лучший результат-Худший результат)) (1.4)

Суть данного подхода в том, что результат теста оценивается не сам по себе, а в тесной взаимосвязи с лучшим и худшим результатами спортсмена, которым присваивается 100 и 0 очков, соответственно.

Пример: лучший результат в прыжке в длину с места равен 279 см, худший 265 см. Сегодня в ходе тестирования испытуемый показал результат 275 см.

Его оценка = 100-(1-(279-275)/(279-265))= 71 балл (1.5)

Оценка батареи (комплекса) тестов [ править | править код ]

Существует два подхода для того, чтобы дать обобщенную характеристику спортсмену по итогам комплексного тестирования:

какие существуют виды погрешности при измерениях спортивной метрологии. Смотреть фото какие существуют виды погрешности при измерениях спортивной метрологии. Смотреть картинку какие существуют виды погрешности при измерениях спортивной метрологии. Картинка про какие существуют виды погрешности при измерениях спортивной метрологии. Фото какие существуют виды погрешности при измерениях спортивной метрологии

1) Выведение обобщенной оценки. Если все тесты равнозначны, то подойдёт обычное суммирование баллов за каждый тест. Однако в спорте часто встречается ситуация, когда главный тренер считает не все тесты равнозначными. В данном случае можно поступить следующим образом [1] :

1. Даётся экспертная оценка. К примеру, тренерский штаб считает, что тест «Бег на коньках 5×54 метра» более важен, нежели остальные. В таком случае специалисты могут назначить ему коэффициент 2. Тогда очки, полученные за результат в этом тесте, будут удваиваться и затем суммироваться с баллами, начисленными по итогам остальных тестов.

2. Произвести факторный анализ, что позволит выделить более и менее «весомые» показатели, на основе чего каждому тесту установить индивидуальный коэффициент.

3. Произвести корреляционный анализ между результатом теста и достижением в соревнованиях, что и будет являться количественной мерой «весомости» теста. Однако данный вариант больше подходит для цикличных видов спорта, нежели к хоккею.

2) Второй подход заключается в создании «профиля» хоккеиста по итогам комплексного тестирования (рис. 2)

какие существуют виды погрешности при измерениях спортивной метрологии. Смотреть фото какие существуют виды погрешности при измерениях спортивной метрологии. Смотреть картинку какие существуют виды погрешности при измерениях спортивной метрологии. Картинка про какие существуют виды погрешности при измерениях спортивной метрологии. Фото какие существуют виды погрешности при измерениях спортивной метрологии

Нормы [ править | править код ]

«Нормой в спортивной метрологии называется граничная величина результата теста, на основе которой производится классификация спортсменов [1] ».

Разновидности норм [ править | править код ]

Б) Индивидуальные нормы выводятся за счёт сравнения показателей одного и того же хоккеиста на разных этапах, что играет крайне важную роль для эффективной индивидуализации тренировочного процесса. Причиной их создания стала существенная разница в структуре тренированности игроков (даже в рамках одной команды). Убедиться в этом можно на реальном примере двух нападающих, выступающих в одной тройке нападения (Таблица 7):

Таблица 6. Шкалы оценок хоккеистов КХЛ [6] [45]

Тесты (контрольные нормативы)

Уровень подготовленности, баллы

Тест Слаломный бег на коньках без шайбы (сек)

Считать пригодными можно только те нормы, которые отвечают следующим условиям: релевантность, репрезентативность и современность.

Методы количественной оценки качественных показателей [ править | править код ]

«Качественными называются показатели, не имеющие определённых единиц измерения. Для количественной оценки таких показателей используются методы квалиметрии.

Метод экспертных оценок [ править | править код ]

Отбор экспертов [ править | править код ]

Объективная оценка пригодности эксперта определяется по формуле:

где Мист — истинная оценка; М — оценка эксперта.

Желательно иметь однородную группу экспертов, но если это не удается, то для каждого из них вводится ранг.

Согласованность мнений экспертов определяется по величине коэффициента конкордации:

где S — сумма квадратов отклонений сумм рангов, приписанных каждому объекту оценки, от средней суммы рангов; т — количество экспертов; п — количество объектов оценки.

Достоверность экспертизы зависит не только от качественных особенностей экспертов, но и от их числа. Оно определяется по формуле:

Подготовка и проведение экспертизы [ править | править код ]

Таблица 8. Экспертная оценка игроков по итогам матчам регулярного чемпионата КХЛ

Оценка экспертов в баллах

Анкетирование [ править | править код ]

Грамотная формулировка вопроса — ключевой аспект при составлении анкеты. При составлении вопросов необходимо следовать следующим рекомендациям [52] :

По характеру вопросы могут предполагать различные формы ответа [1] :

1) при ответе требуется выбрать одно из заранее сформулированных утверждений (или несколько, с количественной оценкой в шкале порядка). Пример:

Пожалуйста, распределите, с Вашей точки зрения, значимость (1.2.3.4.5) следующих видов подготовки хоккеиста:

A) Физическая
Б) Техническая
B) Тактическая
Г) Теоретическая
Д) Психологическая

2) какое решение респондент принял бы в определенной ситуации (или несколько, с количественной оценкой в шкале порядка). Пример:

Какие тесты для оценки ОФП Вы предпочитаете использовать?

3) требующая количественной оценки какой-либо величины. Пример:

Конкретизируйте, пожалуйста, в процентном соотношении количество игроков, приступающих к предсезонному сбору:

A) С отличной физической подготовленностью (%)
Б) Средней физической подготовленностью (%)
B) Неудовлетворительной физической подготовленностью (%)

В соответствии с решаемыми задачами, встречаются следующие виды вопросов [52] :

1. Закрытые — открытые

Ваше игровое амплуа в прошлом (специализация)?

А) Нападающий
Б) Защитник
В)Вратарь
Г) Иное (укажите)

Какие тесты для оценки СФП Вы предпочитаете использовать?

2. Субъективные — проективные

Кто, с Вашей точки зрения, должен отвечать за осуществление педагогического контроля?

A) Главный тренер
Б) Тренер по физической подготовке
B) Врач
Г) Научный сотрудник
Д) Научная группа
Е) Иное (желательно указать)

В каком физическом состоянии игроки команды приступают к предсезонным сборам?

A) Отличном
Б) Среднем
B) Неудовлетворительном

Периодизация комплексного контроля [ править | править код ]

Исходя из современных тенденций проведения чемпионатов в игровых видах спорта, где график игр выстроен максимально плотно, минимально приемлемым вариантом проведения тестирования является:

1) начало предсезонной подготовки — позволяет определить, в каком состоянии спортсмены вернулись после отпуска;

2) окончание предсезонной подготовки — даёт возможность оценить степень прогресса игроков и эффективность предложенной тренировочной программы. Данный момент является щепетильным для тренеров, так как служит прямой оценкой их работы. Вместе с тем, это является жизненно необходимым, поскольку способствует совершенствованию системы подготовки;

3) середина соревновательного периода (игрового сезона) — позволяет оценить, насколько удаётся поддерживать достигнутый в предсезонном периоде уровень подготовленности;

4) окончание сезона — характеризует уровень подготовленности в период наиболее ответственных игр.

Заключение [ править | править код ]

Комплексный контроль является важнейшим атрибутом процесса управления подготовкой спортсмена. Его результаты дают тренерам информацию об эффективности тренировочного процесса, возможность совершенствовать программу подготовки, а также обеспечить индивидуальное планирование нагрузки в соответствии с поставленными задачами. Получение объективной информации возможно при условии знания и соблюдения метрологических основ комплексного контроля, таких как: требования к точности, стандартизации и безопасности измерительных процедур; использование надёжных, стабильных и информативных тестов; оценка результатов согласно научно обоснованным шкалам. Важнейшим итогом систематического применения комплексного контроля в работе тренера будет рост его профессиональных навыков и, следовательно, результативности работы.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *