какие тела называют аморфными телами

Аморфные тела

какие тела называют аморфными телами. Смотреть фото какие тела называют аморфными телами. Смотреть картинку какие тела называют аморфными телами. Картинка про какие тела называют аморфными телами. Фото какие тела называют аморфными телами

Аморфные тела (структура диоксида кремния)

Твердые тела разделяют на аморфные и кристаллические, в зависимости от их молекулярной структуры и физических свойств.

В отличие от кристаллов молекулы и атомы аморфных твердых тел не формируют решетку, а расстояние между ними колеблется в пределах некоторого интервала возможных расстояний. Иначе говоря, у кристаллов атомы или молекулы взаимно расположены таким образом, что формируемая структура может повторяться во всем объеме тела, что называется дальним порядком. В случае же с аморфными телами – сохраняется структура молекул лишь относительно каждой одной такой молекулы, наблюдается закономерность в распределении только соседних молекул – ближний порядок. Наглядный пример представлен ниже.

какие тела называют аморфными телами. Смотреть фото какие тела называют аморфными телами. Смотреть картинку какие тела называют аморфными телами. Картинка про какие тела называют аморфными телами. Фото какие тела называют аморфными телами

На рисунке слева (а) изображена решетка молекул кварца, а справа (б) расположение молекул кварцевого стекла, которое является аморфным телом.

К аморфным телам относится стекло и другие вещества в стеклообразном состоянии, канифоль, смолы, янтарь, сургуч, битум, воск, а также органические вещества: каучук, кожа, целлюлоза, полиэтилен и др.

Свойства аморфных тел

Особенность строения аморфных твердых тел придает им индивидуальные свойства:

какие тела называют аморфными телами. Смотреть фото какие тела называют аморфными телами. Смотреть картинку какие тела называют аморфными телами. Картинка про какие тела называют аморфными телами. Фото какие тела называют аморфными телами

График перехода аморфного тела в жидкое состояние изображен пунктирной линией (2), а график перехода обычного твердого тела в жидкое состояние – сплошной (1).

Стеклообразное состояние

В природе существуют жидкости, которые практически невозможно перевести в кристаллическое состояние посредством охлаждения, так как сложность молекул этих веществ не позволяет им образовать регулярную кристаллическую решетку. К таким жидкостям относятся молекулы некоторых органических полимеров.

Материалы по теме

Жидкие кристаллы

какие тела называют аморфными телами. Смотреть фото какие тела называют аморфными телами. Смотреть картинку какие тела называют аморфными телами. Картинка про какие тела называют аморфными телами. Фото какие тела называют аморфными телами

Однако, при помощи глубокого и быстрого охлаждения, практически любое вещество способно перейти в стеклообразное состояние. Это такое аморфное состояние, которое не имеет явной кристаллической решетки, но может частично кристаллизироваться, в масштабах малых кластеров. Данное состояние вещества является метастабильным, то есть сохраняется при некоторых требуемых термодинамических условиях.

При помощи технологии охлаждения с определенной скоростью вещество не будет успевать кристаллизоваться, и преобразуется в стекло. То есть чем выше скорость охлаждения материала, тем меньше вероятность его кристаллизации. Так, например, для изготовления металлических стекол потребуется скорость охлаждения, равная 100 000 – 1 000 000 Кельвин в секунду.

В природе вещество существует в стеклообразном состоянии возникает из жидкой вулканической магмы, которая, взаимодействуя с холодной водой или воздухом, быстро охлаждается. В данном случае вещество зовется вулканическим стеклом. Также можно наблюдать стекло, образованная в результате плавления падающего метеорита, взаимодействующего с атмосферой – метеоритное стекло или молдавит.

какие тела называют аморфными телами. Смотреть фото какие тела называют аморфными телами. Смотреть картинку какие тела называют аморфными телами. Картинка про какие тела называют аморфными телами. Фото какие тела называют аморфными телами

Молдавит, естественное стекло, образованное ударом метеорита, из Беседин, Богемия, Чехия.

Источник

Аморфные тела

какие тела называют аморфными телами. Смотреть фото какие тела называют аморфными телами. Смотреть картинку какие тела называют аморфными телами. Картинка про какие тела называют аморфными телами. Фото какие тела называют аморфными телами

какие тела называют аморфными телами. Смотреть фото какие тела называют аморфными телами. Смотреть картинку какие тела называют аморфными телами. Картинка про какие тела называют аморфными телами. Фото какие тела называют аморфными телами

какие тела называют аморфными телами. Смотреть фото какие тела называют аморфными телами. Смотреть картинку какие тела называют аморфными телами. Картинка про какие тела называют аморфными телами. Фото какие тела называют аморфными телами

Амо́рфные вещества́ (тела́) (от др.-греч. ἀ «не-» и μορφή «вид, форма») — конденсированное состояние вещества, атомарная структура которых имеет ближний порядок и не имеет дальнего порядка, характерного для кристаллических структур. В отличие от кристаллов стабильно-аморфные вещества не затвердевают с образованием кристаллических граней, и, (если не были под сильнейшим анизотропным воздействием — сжатием или электрическим полем, например) обладают изотропией свойств, то есть не обнаруживают различных свойств в разных направлениях. И не имеют определённой точки плавления: при повышении температуры стабильно-аморфные вещества постепенно размягчаются и выше температуры стеклования (Tg) переходят в жидкое состояние. Вещества с высокой скоростью кристаллизации, обычно имеющие (поли-)кристаллических структуру, но сильно переохлаждённые при затвердевании в аморфное состояние, при последующем нагреве незадолго до плавления рекристаллизуются (в твёрдом состоянии с небольшим выделением тепла), а затем плавятся как обычные поликристаллические.

Получаются при высокой скорости затвердевания(остывания) жидкого расплава или конденсацией паров на охлаждённую заметно ниже температуры ПЛАВЛЕНИЯ(не кипения!) подложку(любой предмет). Соотношение реальной скорости охлаждения (dT/dt) и характеристической скорости кристаллизации определяет долю поликристаллов в аморфном объёме. Скорость кристаллизации — параметр вещества, слабо зависящий от давления и от температуры (около точки плавления — сильно). И сильно зависящий от сложности состава — для металлов порядка долей-десятков миллисекунд; а для стёкол при комнатной температуре — сотни и тысячи лет (старые стёкла и зеркала мутнеют).

Кварц (SiO2) также имеет низкую скорость кристаллизации, поэтому отлитые из него изделия получаются аморфными. Однако природный кварц, имевший сотни и тысячи лет для кристаллизации при остывании земной коры или глубинных слоев вулканов, имеет крупнокристаллическое строение, в отличие от вулканического стекла, застывшего на поверхности.

К стабильно-аморфным веществам принадлежат стекла (искусственные и вулканические), естественные и искусственные смолы, клеи, парафин, воск и др. Аморфные вещества могут находиться либо в стеклообразном состоянии (при низких температурах), либо в состоянии расплава (при высоких температурах). Аморфные вещества переходят в стеклообразное состояние при температурах заметно ниже температуры стеклования Tg. При температурах намного выше Tg аморфные вещества ведут себя как расплавы, то есть находятся в расплавленном состоянии(если не разлагаются от перегрева и не сгорают, конечно). Вязкость аморфных материалов — непрерывная функция температуры: чем выше температура, тем ниже вязкость аморфного вещества.

Структура

Исследования показали, что структуры жидкостей и аморфных тел имеют много общего. В аморфных и жидких телах наблюдается ближний порядок в упаковке частиц (атомов или молекул). По этой причине принято считать аморфные тела очень густыми/вязкими (застывшими) жидкостями.

Также бывают промежуточные полуаморфные (полукристаллические) состояния.

Свойства

Все физические свойства аморфного и поликристаллического состояний одного и того же вещества заметно (иногда сильно) отличаются (кроме плотности).

Электрические и механические свойства аморфных веществ ближе к таковым для монокристаллов, чем для поликристаллов из-за отсутствия резких и сильно загрязнённых примесями межкристаллических переходов(границ) с зачастую абсолютно другим химическим составом.

Немеханические свойства полуаморфных состояний обычно являются промежуточными между аморфным и кристаллическим и изотропны. Однако отсутствие резких межкристаллических переходов заметно влияет на электрические и механические свойства, делая их похожими на аморфные.

При внешних воздействиях аморфные вещества обнаруживают одновременно упругие свойства, подобно кристаллическим твердым веществам, и текучесть, подобно жидкости. Так, при кратковременных воздействиях (ударах) они ведут себя как твёрдые вещества и при сильном ударе раскалываются на куски. Но при очень продолжительном воздействии (например растяжении) аморфные вещества текут. Например, аморфным веществом также является смола (или гудрон, битум). Если раздробить её на мелкие части и получившейся массой заполнить сосуд, то через некоторое время смола сольётся в единое целое и примет форму сосуда.

В зависимости от электрических свойств, разделяют аморфные металлы, аморфные неметаллы, и аморфные полупроводники.

Источник

Аморфные тела

какие тела называют аморфными телами. Смотреть фото какие тела называют аморфными телами. Смотреть картинку какие тела называют аморфными телами. Картинка про какие тела называют аморфными телами. Фото какие тела называют аморфными телами какие тела называют аморфными телами. Смотреть фото какие тела называют аморфными телами. Смотреть картинку какие тела называют аморфными телами. Картинка про какие тела называют аморфными телами. Фото какие тела называют аморфными телами

Всего получено оценок: 221.

Всего получено оценок: 221.

Твердые тела существуют в двух основных состояниях, отличающихся своим внутренним строением, что приводит различию их физических свойств. Это — кристаллическое и аморфное состояния твердых тел. Основным признаком кристаллов является строгий, повторяющийся порядок расположения атомов. Аморфные вещества (от греческого слова “аморфос” — бесформенный) не имеют упорядоченной, кристаллической структуры.

Структура аморфных тел

В телах, находящихся в аморфном состоянии, отсутствует четкий порядок расположения атомов. Существует только, так называемый ближний порядок, когда ближайшие атомы располагаются относительно упорядоченно. По своей структуре аморфные вещества похожи на жидкости.

какие тела называют аморфными телами. Смотреть фото какие тела называют аморфными телами. Смотреть картинку какие тела называют аморфными телами. Картинка про какие тела называют аморфными телами. Фото какие тела называют аморфными теламиРис. 1. Внутреннее строение (решетка) кристаллического твердого тела и структура аморфного тела.

Аморфное состояние вещества, в отличие от кристаллического, не является устойчивым. По прошествии некоторого времени аморфное вещество постепенно переходит в кристаллическое. Правда, это время измеряется годами и десятилетиями.

В аморфном состоянии могут находиться и такие вещества, которые обычно имеют кристаллическую структуру. Например, кристалл кварца SiO2 если его расплавить (при температуре 1700 0 С), при охлаждении образует плавленый кварц, имеющий меньшую плотность, чем кристаллический, и обладающий свойствами одинаковыми по всем направлениям, притом сильно отличающимися от свойств кристаллического кварца.

Примеры аморфных тел

Аморфными являются огромное количество веществ. Вот только некоторые, хорошо известные вещества: парафин, воск, сургуч, эбонит, шоколад, канифоль, смола, стекло, плексиглас, каучук, стекло, различные пластмассы.

какие тела называют аморфными телами. Смотреть фото какие тела называют аморфными телами. Смотреть картинку какие тела называют аморфными телами. Картинка про какие тела называют аморфными телами. Фото какие тела называют аморфными теламиРис. 2. Примеры аморфных веществ.

Свойства аморфных тел

В силу своего строения, в отличие от кристаллических тел, аморфные тела обладают следующими основными свойствами:

какие тела называют аморфными телами. Смотреть фото какие тела называют аморфными телами. Смотреть картинку какие тела называют аморфными телами. Картинка про какие тела называют аморфными телами. Фото какие тела называют аморфными телами

Рис. 3. Графики перехода аморфного и кристаллического тел в жидкое состояние.

Есть вещества, обладающие одновременно свойствами и жидкости и кристалла, а именно текучестью и анизотропией. Такое состояние вещества называется жидкокристаллическим. В основном жидкими кристаллами являются органические вещества, молекулы которых имеют форму плоских пластин или нитевидную форму. Эти вещества являются основой для жидкокристаллических экранов телевизоров.

какие тела называют аморфными телами. Смотреть фото какие тела называют аморфными телами. Смотреть картинку какие тела называют аморфными телами. Картинка про какие тела называют аморфными телами. Фото какие тела называют аморфными телами

Что мы узнали?

Итак, мы узнали, что из себя представляют твердые тела в аморфном состоянии. Структура этих веществ не имеет упорядоченного порядка размещения атомов. Физические свойства аморфных тел не зависят от направления воздействия и ориентации тела.

Источник

какие тела называют аморфными телами. Смотреть фото какие тела называют аморфными телами. Смотреть картинку какие тела называют аморфными телами. Картинка про какие тела называют аморфными телами. Фото какие тела называют аморфными телами

Примеры таких веществ можно найти повсеместно, так как это одно из основных состояний, в которых может существовать материя. Слово «аморфный» происходит из древнегреческого языка и означает «бесформенный».

Свойства аморфных веществ

Отличием таких субстанций от веществ, имеющих кристаллическую структуру, является отсутствие строгого порядка нахождение атомов. Такая конструкция не является устойчивой и, постепенно видоизменяясь, имеет склонность к переходу в кристаллическую.

В сообщении на эту тему необходимо дать определение и кратко описать основные качества «бесформенных» тел.

Ведь именно выраженные отличия их от твердых субстанций и диктуют необходимость выделять их в отдельный класс.

От твёрдых тел они отличаются такими особыми качествами:

какие тела называют аморфными телами. Смотреть фото какие тела называют аморфными телами. Смотреть картинку какие тела называют аморфными телами. Картинка про какие тела называют аморфными телами. Фото какие тела называют аморфными телами

Разные состояния субстанций

В свою очередь, некоторые кристаллические тела способны при определенных условиях переходить в аморфное состояние, меняя в результате свои строение и физические свойства. В зависимости от состояния такие вещества могут относиться к разным классам (к какому именно — зависит от внешних условий).

какие тела называют аморфными телами. Смотреть фото какие тела называют аморфными телами. Смотреть картинку какие тела называют аморфными телами. Картинка про какие тела называют аморфными телами. Фото какие тела называют аморфными телами

В качестве примера можно выбрать кварц, представляющий собой оксид кремния, который приобретает аморфные свойства при нагревании до температуры 1700 градусов и плавлении. После охлаждения свойства вещества меняются: оно приобретает меньшую плотность, чем до нагревания, и отличается от кристаллического кварца по ряду других качеств.

Тела, способные находиться при разных условиях в твердом и аморфном состояниях, обладают в бесструктурном виде большей внутренней энергией, нежели в твёрдом. Именно это качество обусловливает закономерность, согласно которой они способны постепенно переходить в кристаллическое состояние («терять аморфность»).

В качестве примера такого феномена можно привести постепенное помутнение стекла по прошествии большого количества времени.

Изменение оптических свойств материала связано с тем, что внутри слоя появляются мелкие, невидимые глазу кристаллики, обладающие другими оптическими параметрами, отличающимися от прозрачной среды.

Примеры «бесформенных» тел

В докладе по физике на тему о таких веществах и их свойствах необходимо перечислить примеры таких субстанций.

К стабильно аморфным телам относят субстанции, которые не склонны твердеть с образованием кристаллических граней (в случае отсутствия выраженных анизотропных воздействий — высокого давления или электрического поля). К этой группе веществ относят:

какие тела называют аморфными телами. Смотреть фото какие тела называют аморфными телами. Смотреть картинку какие тела называют аморфными телами. Картинка про какие тела называют аморфными телами. Фото какие тела называют аморфными телами

Несколько особняком стоит отдельный класс соединений, обладающих одновременно свойствами кристаллических структур и аморфных тел. Может показаться странным, но таким телам присущи и анизотропия, и текучесть. Такое состояние принято называть жидкокристаллическим.

Как правило, с точки зрения химической структуры, жидкокристаллические субстанции являются органическими соединениями, имеющими нитевидную или пластинообразную конфигурацию молекул.

Именно такие структуры, обладающие комбинированными свойствами, являются основой для жидкокристаллических экранов и нашли применение при производстве электронной техники. Этим же термином стала называться и техника, снабженная таким экраном.

Источник

Новая теория аморфных тел объяснила их упругие свойства

какие тела называют аморфными телами. Смотреть фото какие тела называют аморфными телами. Смотреть картинку какие тела называют аморфными телами. Картинка про какие тела называют аморфными телами. Фото какие тела называют аморфными телами

E. DeGiuli / Phys. Rev. Lett.

Французский физик Эрик Дежьюли (Eric DeGiuli) разработал статистическую теорию поля, которая описывает поведение аморфных твердых тел с произвольной внутренней структурой в двух и трех измерениях. Предсказания этой теории хорошо согласуются с результатами экспериментов и численных расчетов, а также позволяют объяснить упругие свойства аморфных тел, которые отсутствуют на малых масштабах, но проявляются на макроскопическом уровне. Статья опубликована в Physical Review Letters, кратко о ней сообщает Physics, препринт работы выложен на сайте arXiv.org. Параллельно с этой работой автор выпустил в Physical Review E более подробную статью (препринт), в которой разбирает детали проведенных вычислений.

Большая часть окружающих нас твердых материалов — цемент, стекло и пластик — не имеют внутренней кристаллической структуры, то есть их частицы не упорядочены, а механические свойства не зависят от направления. Такие материалы называют аморфными. Кроме того, к аморфным телам относят коллоидные растворы (йогурт или шоколадный мусс) и сыпучие материалы, состоящие из большого числа макроскопических частиц (песок), — если приложить к ним нагрузку, они также начинают вести себя, как твердое тело. Несмотря на то, что внутренняя структура различных типов аморфных твердых тел существенно отличается, их механические и термодинамические свойства имеют много общего. Чтобы объяснить эти совпадения, ученые пытаются выделить самые важные параметры, общие для таких тел, и построить теорию, которая позволит предсказывать их свойства.

Поведение твердого тела при изменении температуры определяется его внутренними состояниями (inherent states) и локальной структурой. Например, в кристаллах атомы строго упорядочены (находятся в узлах кристаллической решетки) и находятся в термодинамическом равновесии, а их колебания удобно описывать с помощью фононов. К сожалению, для аморфных твердых тел эти приближения не работают, и в настоящее время не существует общепринятой теории, которая описывает их внутренние состояния. Основное препятствие, которое мешает построить такую теорию, — тот факт, что внутренние напряжения в аморфных телах вызываются не потенциальными силами и не исчезают даже при снятии внешней нагрузки. Например, частицы песка продолжают «цепляться» друг за друга и терять энергию из-за трения даже тогда, когда его ничто не сдавливает. С атомами кристаллической решетки ничего подобного не происходит. В то же время, по своим макроскопическим свойствам аморфные твердые тела очень похожи на кристаллы — например, их теплоемкость и теплопроводность ведут себя практически одинаково при изменении температуры. Это позволяет предположить, что простое объяснение возможно все-таки существует.

Результаты прямых экспериментов и численного моделирования аморфных тел подтверждают, что такое объяснение должно существовать. Например, моделирование сыпучих материалов и переохлажденных жидкостей показало, что корреляционные функции в них подчиняются степенному закону: C

Чтобы объяснить эту зависимость, в 2009 году Силке Хенкес (Silke Henkes) и Бюльбюль Чакраборти (Bulbul Chakraborty) адаптировали для сыпучих материалов подход неравновесной статистической механики, разработанный в конце 1980-х годов британским физиком Сэмом Эдвардсом (Sam Edwards). Связывая макроскопическое поведение такого материала с его внутренними напряжениями, ученые рассчитали корреляционные функции и убедились, что их качественная зависимость совпадает с экспериментом. Также исследователи разработали двумерную теорию поля, которая исчерпывающе описывает поведение двумерных сыпучих материалов.

какие тела называют аморфными телами. Смотреть фото какие тела называют аморфными телами. Смотреть картинку какие тела называют аморфными телами. Картинка про какие тела называют аморфными телами. Фото какие тела называют аморфными телами

Слева — микроскопическая структура аморфного тела (стекла). Справа — отклик стекла на внесенный в него диполь в приближении непрерывной среды (теории поля)

E. DeGiuli / Phys. Rev. Lett.

Во-вторых, исследователь заменил приближение мультиканонического ансамбля (flat ensemble) на условие малости волнового числа рассматриваемых колебаний поля по сравнению с обратным диаметром частиц материала: kD ≪ 1. Это требование позволяет использовать стандартные методы статистической теории поля, чтобы выделять взаимодействия, которые дают самый большой вклад в корреляционные функции. В-третьих, ученый рассматривал только локальные взаимодействия между внутренними напряжениями, и не накладывал строгих ограничений на силы, такие как требование положительной определенности. В-четвертых, Дежьюли рассматривал предел нулевой температуры, то есть пренебрегал термодинамическими колебаниями. Наконец, физик считал, что материал изотропен и находится в локальном механическом равновесии — суммарная сила и момент, действующие на любой маленький объем вещества, равны нулю.

В результате ученый получил, что корреляционная функция в аморфных материалах ведет себя в точности как C

1/r d (физик рассмотрел случаи d = 2 и d = 3). Это предсказание хорошо согласуется с данными экспериментов и численного моделирования. Кроме того, наличие дальних корреляций означает, что материал обладает упругими свойствами, аналогичными свойствам твердого тела — другими словами, после снятия внешнего напряжения он стремится вернуть свою исходную форму. Важно отметить, что рассуждения Дежьюли не требуют, чтобы эти свойства присутствовали на микроскопическом уровне, как в кристаллических телах. Например, отдельные песчинки практически не притягивают друг друга, однако твердое аморфное тело, состоящее из них, все равно будет упругим.

Автор статьи отмечает, что анализ был проведен в предположении очень низкой температуры, которое редко выполнено на практике. При конечной температуре продольная часть корреляционных функций должна получить поправки, растущие при нагревании тела; тем не менее, они практически не влияют на поперечные части функции, дающие основной вклад в рассмотренные эффекты. Также физик надеется, что его работа поможет лучше предсказывать свойства аморфных тел — например, рассчитать предел прочности цемента в переменных погодных условиях или при больших растяжениях.

В прошлом году материаловеды из США и Франции показали, что механические параметры, описывающие пластическую деформацию аморфных твердых тел, универсальны, то есть подчиняются одинаковым закономерностям вне зависимости от внутренней структуры материала. Для этого ученые рассматривали моменты, когда структура материалов только начинает перестраиваться, и изучали их с помощью численного моделирования и прямых экспериментов.

Кроме того, аморфные твердые тела имеют много общего с сыпучими жидкостями и газами, которые состоят из сравнительно крупных частиц, неупруго взаимодействующих друг с другом. В последнее время физики активно изучают такие системы на практике и в теории. Например, в декабре 2017 исследователи из Испании и Мексики показали, что «жидкость», состоящая из большого числа игральных кубиков, упорядочивается, если периодически вращать ее в противоположные стороны с достаточно большим ускорением. В феврале этого года ученые из Германии и США обнаружили похожие эффекты в системе стеклянных шариков. А в мае немецкие исследователи впервые увидели на практике охлаждение сыпучего газа, состоящего из тонких медных палочек и помещенного в невесомость.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *