какие углеводороды не содержатся в сырой нефти а образуются в процессе ее переработки

Переработка нефти

На сегодняшний день основным природным источником углеводородов является нефть. Первые нефтеперерабатывающие заводы строили именно в местах добычи, однако техническая модернизация средств перевозки стала причиной отделения нефтепереработки от нефтедобычи. Центры переработки нефти все чаще строятся вдали от мест добычи, в регионах массового потребления нефтепродуктов или вдоль нефтепроводов.

Процесс переработки нефти

Переработка нефти происходит в три главных этапа:

На нефтеперерабатывающих заводах производят моторные и котельные топлива, сжиженные газы, разные типы сырья для нефтехимических комбинатов, а также смазочные, гидравлические и прочие масла, битумы, нефтяные коксы, парафины. Исходя из того, какая применяется технология переработки нефти, на НПЗ производят от 5 до 40 позиций товарных нефтепродуктов. Нефтепереработка является непрерывным процессом, период деятельности производств между капитальными ремонтами в нынешних условиях достигает около 3-х лет.

Первичная переработка нефти

какие углеводороды не содержатся в сырой нефти а образуются в процессе ее переработки. Смотреть фото какие углеводороды не содержатся в сырой нефти а образуются в процессе ее переработки. Смотреть картинку какие углеводороды не содержатся в сырой нефти а образуются в процессе ее переработки. Картинка про какие углеводороды не содержатся в сырой нефти а образуются в процессе ее переработки. Фото какие углеводороды не содержатся в сырой нефти а образуются в процессе ее переработки

Вторичная переработка нефти

Вторичные способы переработки нефти включают такие процедуры, которые направлены на увеличение количества производимых моторных топлив. В ходе таких процессов осуществляется химическая модификация молекул углеводородов, находящихся в составе нефти, чаще всего, с их преобразованием в более удобные для окисления формы.
Все вторичные процессы делятся на три категории:

Крекинг

Существуют такие виды крекинга:

Продукты переработки нефти

Источник

Первичные процессы переработки нефти на НПЗ, ее фракционный состав и устройство ректификационных колонн

какие углеводороды не содержатся в сырой нефти а образуются в процессе ее переработки. Смотреть фото какие углеводороды не содержатся в сырой нефти а образуются в процессе ее переработки. Смотреть картинку какие углеводороды не содержатся в сырой нефти а образуются в процессе ее переработки. Картинка про какие углеводороды не содержатся в сырой нефти а образуются в процессе ее переработки. Фото какие углеводороды не содержатся в сырой нефти а образуются в процессе ее переработки

Нефть состоит из множества компонентов — фракций, — свойства, область применения и технологии переработки которых различны. Первичные процессы нефтеперерабатывающего производства позволяют выделить отдельные фракции, подготовив тем самым сырье для дальнейшего получения всем нам хорошо знакомых товарных продуктов — бензина, дизеля, керосина и многих других

Стабильность прежде всего

Прежде чем попасть на производство, нефть еще на промысле проходит первоначальную подготовку. При помощи газонефтяных сепараторов из нее удаляют наиболее легкие, газообразные составляющие. Это попутный нефтяной газ (ПНГ), состоящий преимущественно из метана, этана, пропана, бутана и изобутана, то есть из углеводородов, в молекулах которых содержится от одного до четырех атомов углерода (от CH4 до C4H10). Этот процесс называется стабилизацией нефти — подразумевается, что после него нефть будет сохранять свой углеводородный состав и основные физико-химические свойства при транспортировке и хранении.

Объективно говоря, разгазирование пластовой нефти начинается еще в скважине по мере продвижения ее наверх: из-за падения давления в жидкости газ из нее постепенно выделяется. Таким образом, наверху приходится иметь дело уже с двухфазным потоком — нефть / попутный газ. Их совместное хранение и транспортировка оказываются экономически невыгодными и затруднительными с технологической точки зрения. Чтобы переместить двухфазный поток по трубопроводу, необходимо создать в нем условия постоянного перемешивания, чтобы газ не отделялся от нефти и не создавал в трубе газовые пробки. Все это требует дополнительных затрат. Намного проще оказывается пропустить газонефтяной поток через сепаратор и максимально отделить от нефти ПНГ. Получить абсолютно стабильную нефть, составляющие которой совсем не будут испаряться в атмосферу, практически невозможно. Некоторое количество газа все равно останется и будет извлечено в процессе нефтепереработки.

какие углеводороды не содержатся в сырой нефти а образуются в процессе ее переработки. Смотреть фото какие углеводороды не содержатся в сырой нефти а образуются в процессе ее переработки. Смотреть картинку какие углеводороды не содержатся в сырой нефти а образуются в процессе ее переработки. Картинка про какие углеводороды не содержатся в сырой нефти а образуются в процессе ее переработки. Фото какие углеводороды не содержатся в сырой нефти а образуются в процессе ее переработки

Кстати, сам попутный нефтяной газ — это ценное сырье, которое может использоваться для получения электроэнергии и тепла, а также в качестве сырья для нефтехимических производств. На газоперерабатывающих заводах из ПНГ получают технически чистые отдельные углеводороды и их смеси, сжиженные газы, серу.

Из истории дистилляции

какие углеводороды не содержатся в сырой нефти а образуются в процессе ее переработки. Смотреть фото какие углеводороды не содержатся в сырой нефти а образуются в процессе ее переработки. Смотреть картинку какие углеводороды не содержатся в сырой нефти а образуются в процессе ее переработки. Картинка про какие углеводороды не содержатся в сырой нефти а образуются в процессе ее переработки. Фото какие углеводороды не содержатся в сырой нефти а образуются в процессе ее переработки

Дистилляция, или перегонка, — процесс разделения жидкостей путем их испарения и последующей конденсации. Считается, что впервые этот процесс освоили в Древнем Египте, где он применялся при получении из кедровой смолы масла для бальзамирования тел умерших. Позднее смолокурением для получения кедрового масла занимались и римляне. Для этого горшок со смолой ставили на огонь и накрывали шерстяной материей, на которой собиралось масло.

Аристотель описал процесс дистилляции в своей работе «Метеорология», а также упоминал вино, пары которого могу вспыхнуть — косвенно подтверждение того, что его предварительно могли подвергнуть перегонке, чтобы повысить крепость. Из других источников известно, что вино перегоняли в III веке до н. э. в Древнем Риме, правда, не для получения бренди, а для изготовления краски.

Следующие упоминания дистилляции относятся к I веку н. э. и связаны с работами александрийских алхимиков. Позднее этот метод у греков переняли арабы, которые активно использовали его в своих опытах. Также достоверно известно, что дистилляцией алкоголя в XII веке занимались в Салернской врачебной школе. В те времена, впрочем, дистилляты спирта употреблялись не как напиток, а в качестве лекарства. В XIII веке флорентийский медик Тадео Альдеротти впервые осуществил фракционирование (разделение) смеси жидкостей. Первая книга, целиком и полностью посвященная вопросам дистилляции, была опубликована в 1500 году немецким врачом Иеронимом Бруншвигом.

Долгое время для перегонки применялись достаточно простые устройства — аламбик (медный сосуд с трубкой для отвода пара) и реторта (стеклянная кол-ба с узким и длинным наклонным носиком). Техника стала совершенствоваться в XV веке. Однако предшественники современных ректификационных колонн для перегонки нефти, в которых происходит теплообмен между противонаправленными потоками жидкости и пара, появились лишь в середине XIX века. Они позволили получать спирт крепостью 96% с высокой степенью очистки.

Также на месторождении от нефти отделяют воду и механические примеси. После этого она поступает в магистральный нефтепровод и отправляется на нефтеперерабатывающий завод (НПЗ). Прежде чем приступить к переработке, нефть необходимо очистить от содержащихся в ней солей (хлоридов и сульфатов натрия, кальция и магния), которые вызывают коррозию оборудования, оседают на стенках труб, загрязняют насосы и клапаны. Для этого используются электрообессоливающие установки (ЭЛОУ). Нефть смешивают с водой, в результате чего возникает эмульсия — микроскопические капельки воды в нефти, в которых растворяется соль. Получившуюся смесь подвергают воздействию электрического поля, из-за чего капли соленой воды сливаются друг с другом и затем отделяются от нефти.

Нефть представляет собой сложную смесь углеводородов и неуглеводородных соединений. С помощью первичной перегонки ее можно разделить только на части — дистилляты, содержащие менее сложную смесь. из-за сложного состава нефтяные фракции выкипают в определенных температурных интервалах.

Фракционный состав

Многие процессы на НПЗ требуют подогрева нефти или нефтепродуктов. Для этого используются трубчатые печи. Нагрев сырья до требуемой температуры происходит в змеевиках из труб диаметром

Нефть состоит из большого количества разных углеводородов. Их молекулы различаются массой, которая, в свою очередь, определяется количеством составляющих их атомов углерода и водорода. Чтобы получить тот или иной нефтепродукт, нужны вещества с совершенно определенными характеристиками, поэтому переработка нефти на НПЗ начинается с ее разделения на фракции.

Согласно исследованию нефтеперерабатывающих и нефтехимических производств, проведенному Американским нефтяным институтом, номенклатура нефтепродуктов, выпускаемых на современных НПЗ и имеющих индивидуальные спецификации, насчитывает более 2000 пунктов.

В одной фракции нефти могут содержаться молекулы разных углеводородов, но свойства большей части из них близки, а молекулярная масса варьируется в определенных пределах. Разделение фракций происходит путем перегонки нефти (дистилляции), основанной на том, что у разных углеводородов температура кипения различается: у более легких она ниже, у более тяжелых — выше.

Основные фракции нефти определяют по интервалам температур, при которой кипят входящие в них углеводороды: бензиновая фракция — 28—150°C, керосиновая фракция — 150—250°C, дизельная фракция, или газойль, — 250—360°C, мазут — выше 360°C. Например, при температуре 120°C большая часть бензина уже испарилась, но керосин и дизельное топливо находятся в жидком состоянии. Когда температура поднимается до 150°C, начинает кипеть и испаряться керосин, после 250°C — дизель.

какие углеводороды не содержатся в сырой нефти а образуются в процессе ее переработки. Смотреть фото какие углеводороды не содержатся в сырой нефти а образуются в процессе ее переработки. Смотреть картинку какие углеводороды не содержатся в сырой нефти а образуются в процессе ее переработки. Картинка про какие углеводороды не содержатся в сырой нефти а образуются в процессе ее переработки. Фото какие углеводороды не содержатся в сырой нефти а образуются в процессе ее переработки

какие углеводороды не содержатся в сырой нефти а образуются в процессе ее переработки. Смотреть фото какие углеводороды не содержатся в сырой нефти а образуются в процессе ее переработки. Смотреть картинку какие углеводороды не содержатся в сырой нефти а образуются в процессе ее переработки. Картинка про какие углеводороды не содержатся в сырой нефти а образуются в процессе ее переработки. Фото какие углеводороды не содержатся в сырой нефти а образуются в процессе ее переработки

Существует ряд специфических названий фракций, используемых в нефтепереработке. Так, например, головной пар — это наиболее легкие фракции нефти, полученные при первичной переработке. Их разделяют на газообразную составляющую и широкую бензиновую фракцию. Боковые погоны — это керосиновая фракция, легкий и тяжелый газойль.

От колонны к колонне

Ректификационная колонна

какие углеводороды не содержатся в сырой нефти а образуются в процессе ее переработки. Смотреть фото какие углеводороды не содержатся в сырой нефти а образуются в процессе ее переработки. Смотреть картинку какие углеводороды не содержатся в сырой нефти а образуются в процессе ее переработки. Картинка про какие углеводороды не содержатся в сырой нефти а образуются в процессе ее переработки. Фото какие углеводороды не содержатся в сырой нефти а образуются в процессе ее переработки

Ректификационная колонна — вертикальный цилиндр, внутри которого расположены специальные перегородки (тарелки или насадки). Пары нагретой нефти подаются в колонну и поднимаются вверх. Чем более легкие фракции испаряются, тем выше они поднимутся в колонне. Каждую тарелку, расположенную на определенной высоте, можно рассматривать как своего рода фильтр — в прошедших ее парах остается все меньшее количество тяжелых углеводородов. Часть паров, конденсировавшихся на определенной тарелке или не достигнув ее, стекает вниз. Эта жидкость, носящая название флегмы, встречается с поднимающимся паром, происходит теплообмен, в результате которого низкокипящие составляющие флегмы снова превращаются в пар и поднимаются вверх, а высококипящие составляющие пара конденсируются и стекают вниз с оставшейся флегмой. Таким образом удается достичь более точного разделения фракций. Чем выше ректификационная колонна и чем больше в ней тарелок, тем более узкие фракции можно получить. На современных НПЗ высота колонн превышает 50 м.

Простейшую атмосферную перегонку нефти можно провести путем обычного нагревания жидкости и дальнейшей конденсации паров. Весь отбор здесь заключается в том, что собирается конденсат паров, образовавшихся в разных интервалах температуры кипения: сначала выкипают и затем конденсируются легкие низкокипящие фракции, а затем средние и тяжелые высококипящие фракции углеводородов. Конечно, при таком способе говорить о разделении на узкие фракции не приходится, так как часть высококипящих фракций переходит в дистиллят, а часть низкокипящих не успевает испариться в своем температурном диапазоне. Чтобы получить более узкие фракции, применяют перегонку с ректификацией, для чего строят ректификационные колонны

50
метров и больше может достигать высота ректификационных колонн на современных нпз

какие углеводороды не содержатся в сырой нефти а образуются в процессе ее переработки. Смотреть фото какие углеводороды не содержатся в сырой нефти а образуются в процессе ее переработки. Смотреть картинку какие углеводороды не содержатся в сырой нефти а образуются в процессе ее переработки. Картинка про какие углеводороды не содержатся в сырой нефти а образуются в процессе ее переработки. Фото какие углеводороды не содержатся в сырой нефти а образуются в процессе ее переработки

Отдельные фракции могут подвергаться и повторной атмосферной перегонке для разделения на более однородные компоненты. Так, из бензинов широкого фракционного состава получают бензольную, толуольную и ксилольную фракции — сырье для получения индивидуальных ароматических углеводородов (бензола, толуола, ксилола). Повторной перегонке и дополнительному разделению могут подвергать и дизельную фракцию.

Перегонка нефти на современных атмосферных установках может осуществляться как однократное испарение в одной ректификационной колонне, двукратное испарение в двух последовательно расположенных колоннах или перегонка с предварительным испарением легких фракций в колонне предварительного испарения.

Перегонка нефти на современных атмосферных установках и на атмосферных секциях комбинированных установок может осуществляться разными способами: как однократное испарение в одной ректификационной колонне, двукратное испарение в двух последовательно расположенных колоннах или перегонка с предварительным испарением легких фракций в колонне предварительного испарения. Также ректификационные колонны могут быть вакуумными, где конденсация паров происходит при минимальном давлении.

Фракции, кипящие при температуре свыше 360°C, при атмосферной перегонке (перегонке при атмосферном давлении) не отделяются, так как при более высокой температуре начинается их термическое разложение (крекинг): крупные молекулы распадаются на более мелкие и состав сырья меняется. Чтобы этого избежать, остаток атмосферной дистилляции (мазут) подвергают перегонке в вакуумной колонне. Так как в вакууме любая жидкость кипит при более низкой температуре, это позволяет разделить и более тяжелые составляющие. На этом этапе выделяются фракции смазочных масел, сырье для термического или каталитического крекинга, гудрон.

какие углеводороды не содержатся в сырой нефти а образуются в процессе ее переработки. Смотреть фото какие углеводороды не содержатся в сырой нефти а образуются в процессе ее переработки. Смотреть картинку какие углеводороды не содержатся в сырой нефти а образуются в процессе ее переработки. Картинка про какие углеводороды не содержатся в сырой нефти а образуются в процессе ее переработки. Фото какие углеводороды не содержатся в сырой нефти а образуются в процессе ее переработки

В ходе первичной переработки получают разные виды сырья, которые затем будут подвергаться химическим преобразованиям в рамках вторичных процессов. У них уже привычные названия — бензин, керосин, дизель, — но они еще не соответствуют требованиям к товарным нефтепродуктам. Их дальнейшая трансформация необходима, чтобы улучшить потребительские качества, очистить, создать продукты с заданными характеристиками и повысить глубину переработки нефти.

Источник

Соединения в составе сырой нефти

Природная маслянистая горючая жидкость известная как нефть имеет сложный и разнообразный состав определяющий её качество. Состав сырой нефти представляющий собой жидкость находящуюся в недрах Земли включает углеводороды, органические соединения и небольшое количества металла.

какие углеводороды не содержатся в сырой нефти а образуются в процессе ее переработки. Смотреть фото какие углеводороды не содержатся в сырой нефти а образуются в процессе ее переработки. Смотреть картинку какие углеводороды не содержатся в сырой нефти а образуются в процессе ее переработки. Картинка про какие углеводороды не содержатся в сырой нефти а образуются в процессе ее переработки. Фото какие углеводороды не содержатся в сырой нефти а образуются в процессе ее переработки

Компоненты состава сырой нефти

Хотя углеводороды обычно являются основным компонентом состава сырой нефти, их количество может варьироваться от 50% до 97% в зависимости от типа горючей жидкости и способа ее добычи. Органические соединения, такие как азот, кислород и сера, обычно составляют от 6 до 10% сырой нефти, в то время как металлы, такие как медь, мышьяк, никель, ванадий и железо, составляют менее 1% от общего состава.

Нефть состоит из следующих основных элементов:

Неорганические соли хлорида магния, хлоридов натрия и других минеральных веществ также сопровождаются с сырой нефтью из скважины либо из-за воды пласта или воды и химических веществ, закачиваемых во время бурения и добычи.

Типы углеводородов в сырой нефти

Существуют три основных типа углеводородов в сырой нефти: парафины или алканы (15-60%), нафтены или циклоалканы (30-60%), ароматические или арены (3-30%).

Парафиновые углеводороды

Общая молекулярная формула (CnH2n+2), С-углерод, H-водород, где n-число атомов углерода в этом соединении. Гомологичные ряды этих углеводородов называются алканами. Алканы относительно неактивны по сравнению с ароматическими веществами и олефинами. При комнатной температуре алканы не подвергаются воздействию концентрированной дымящей серной кислоты, концентрированных щелочей или мощных окислителей, таких как хромовая кислота. Алканы проводят реакции замещения медленно с хлором в солнечном свете и с бромом в присутствии катализатора.

Парафины выпускаются как обычные, так и изопарафины. Нормальные парафины представляют собой соединения с прямой цепью, а изопарафины — разветвленные соединения.

Изопарафины более реактивны, чем обычные парафины, и желательны в моторном топливе.

Нормальные парафины могут быть преобразованы в изопарафины термическим или химическим путем. Это называется реакцией изомеризации.

Олефины эта серия известна как алкены: это ненасыщенные углеводороды, что означает наличие двойной связи между двумя атомами углерода в формуле. Родовая формула (CnH2n), и самый низкий член этого гомологичного ряда этилен, C2H4. Алкены бывают как жидкость так и газ: этилен, бутен, изобутен. Они обладают высокой реакционной способностью и могут сами реагировать на моноолефины.

Олефины не присутствуют в сырой нефти, но они образуются путем термического и каталитического разложения или дегидрирования обычных парафинов.

Олефины обычно нежелательны в готовых продуктах, потому что двойные связи реакционноспособны, а соединения легче окисляются и полимеризуются с образованием смол и лаков, поэтому их можно удалить абсорбцией в серной кислоте.

Нафтены или циклопарафины

Нафтены или циклопарафины: циклические насыщенные углеводороды с общей формулой, как олефины,(CnH2n), также известные как циклоалканы.

Поскольку они насыщены, они относительно неактивны, как парафины. Нафтены являются желательными соединениями для производства ароматических веществ и высококачественных базовых запасов смазочных масел.

Ароматические соединения

Не имеют отношения к запаху и является понятием, характеризующим структурные молекулы. Термин устоялся из-за приятного запаха этих веществ.

Ароматические соединения часто называемые бензолами, химически очень активны по сравнению с другими группы углеводородов. Их общая формула (CnH2n-6) при n ≥ 6.

Эти углеводороды подвергаются воздействию кислорода с образованием органических кислот.

Ароматические вещества также могут быть получены дегидрированием нафтенов в присутствии платинового катализатора.

Низшие ароматические соединения, такие как бензол, толуол и ксилолы, являются хорошими растворителями и инициаторами для многих нефтехимических продуктов.

Ароматические вещества из нефтепродуктов могут быть отделены экстракцией растворителями, такими как фенол, фурфурол и диэтиленгликоль.

Виды углеводородов в сырой нефти
Тип углеводородовОтличительная чертаОсновные углеводородыОсобенности
Парафины (алканы)Прямая углеродная цепьМетан, этан, пропан, бутан, пентан, гексанТемпература кипения увеличивается по мере того, как число атомов углерода увеличивается. С количеством углерода 25-40 % парафины становится восковыми.
Изопарафины (изоалканы)Разветвленная углеродная цепь.Изобутан, изопентан, неопентан, изооктанЧисло возможных изомеров возрастает в геометрической прогрессии по мере увеличения количества углерода атомы увеличиваются.
Олефины (алкены)Одна пара углеродистых атомовЭтилен, пропилен, этен, пропен, бутен, пентен, гексенОбщая формула CnH2n. Олефины не присутствуют в сырой нефти, но образуются во время процесса.
Нежелательно в готовом продукте из-за их высокой реактивности. Низкая молекулярная масса олефинов имеет хорошие антидетонационные свойства.
Циклоалканы

(полиметиленовые углеводороды)

Насыщенные углеводороды

содержат замкнутый углеродный цикл.

Циклопентан, метил-циклопентан, диметилциклопентан циклогексан, 1,2-диметилциклогексанОбщая формула CnH2n, имеющая циклическое строение. Средняя сырая нефть содержит около 50 % нафтенов. Нафтены-скромно хорошие компоненты бензина.
Ароматические или арены6 атомов углерода в кольце с тремя вокругБензол, толуол, ксилол, этилбензол, кумол, нафталинАроматические вещества нежелательны в керосине и смазочном масле. Бензол является канцерогеном, следовательно, нежелательная часть бензина.

Неуглеводороды или гетероатомные соединения

Общие гетероатомы в углеводородах — это атомы серы, кислорода, азота и металлов.

Соединения серы

Соединения серы присутствуют в сырой нефти в виде меркаптанов органических веществ, сернистые аналоги спиртов, имеющие общую формулу RSH, где R — углеводородный радикал Примерами циклических соединений серы являются тиофены и бензотиофены.

Газ сероводород

Газ сероводород (H2S) связан с сырой нефтью в растворенном виде и выделяется при нагревании. H2S вызывает коррозию при высоких температурах и в присутствии влаги.

Сырая нефть, содержащая большое количество H2S, называется кислой сырой нефтью. Сера, присутствующая в нефтяных топливных продуктах, также образует различные оксиды серы (SOx) при горении, которые являются сильными загрязнителями окружающей среды. H2S может быть удален из газов путем абсорбции в растворе с производными аммиака.

В легких дистиллятах сера может присутствовать в виде H2S, меркаптанов и тиофенов, но в более тяжелых фракциях сырой нефти 80-90% серы обычно присутствует в сложной кольцевой структуре углеводородов. В этой комбинации атом серы стабилен и не реагирует. В результате сера из более тяжелой нефти не может быть удалена без разрушительной реакции, такой как тяжелые термические или каталитические реакции.

В настоящее время сера извлекается при рафинировании и продается в виде продукта. Сера также оказывает отравляющее действие на различные катализаторы.

Соединения азота

Состав сырой нефти может включать соединения азота которые обычно встречаются в более тяжелых видах.

Соединения азота ответственны за цвет и цветовую нестабильность. В общем, чем более асфальтирована нефть, тем выше в ней содержание азота. Азот в нефтяных топливах вызывает образование оксидов азота (NOx), которые также являются сильными загрязнителями атмосферы. Азот может быть удален из нефтепродукты методом каталитического гидрирования.

Соединения азота более стабильны, чем соединения серы, и поэтому их труднее удалить, даже если они присутствуют в очень низких концентрациях.

Кислородные соединения

Сырая нефть может содержать кислородсодержащие соединения, такие как нафтеновые кислоты, фенолы и крезолы, которые ответственны за коррозионную деятельность. Кислород также действует на многие катализаторы. Кислород может быть удален каталитическим гидрированием.

Избыток кислородных соединений может даже привести к взрыву.

Металлы

Металлические соединения ванадия, никеля, свинца, мышьяка и др., также содержатся в сырой нефти.

Ванадий и никель встречаются в виде металлоорганических соединений в основном в более тяжелых фракциях сырой нефти, где атомы металлов распределены внутри соединения в сложной форме, называемой порфиринами.

Нефтяное топливо, содержащее эти металлические соединения, может повреждать горелки, трубопроводы и стенки камер сгорания.

Источник

Откуда берется нефть

какие углеводороды не содержатся в сырой нефти а образуются в процессе ее переработки. Смотреть фото какие углеводороды не содержатся в сырой нефти а образуются в процессе ее переработки. Смотреть картинку какие углеводороды не содержатся в сырой нефти а образуются в процессе ее переработки. Картинка про какие углеводороды не содержатся в сырой нефти а образуются в процессе ее переработки. Фото какие углеводороды не содержатся в сырой нефти а образуются в процессе ее переработки

Нефтяные месторождения — уникальное хранилище энергии, образованной и накопленной на протяжении миллионов лет в недрах нашей планеты. В этом материале — о том, какой путь проделала нефть, прежде чем там оказаться, из чего она состоит и какими свойствами обладает

Две гипотезы

У ученых до сих пор нет единого мнения о том, как образовалась нефть. Существуют две принципиально разные теории происхождения нефти. Согласно первой — органической, или биогенной, — из останков древних организмов и растений, которые на протяжении миллионов лет осаждались на дне морей или захоронялись в континентальных условиях. Затем перерабатывались сообществами микроорганизмов и преобразовывались под действием температуры и давлений в результате тектонического опускания вглубь недр, формируя богатые органическим веществом нефтематеринские породы.

Необходимые условия для превращения органики в нефть возникают на глубине в так называемом нефтяном окне — при температуре от 70 до 190°C. В верхней его части температура недостаточно высока — и нефть получается «тяжелой»: вязкой, густой, с высоким содержанием смол и асфальтенов. Внизу же температура пластов поднимается настолько, что молекулы органического вещества дробятся на самые простые углеводороды — образуется природный газ. Затем под воздействием различных сил, в том числе градиента Градиент давления характеризует степень изменения давления в пространстве, в данном случае — в зависимости от глубины пласта давления, углеводороды мигрируют из нефтематеринского пласта в выше- или нижележащие породы.

60 млн лет может занимать природный процесс образования нефти из органических останков

Природный процесс образования нефти из органических останков занимает в среднем от 10 до 60 млн лет, но если для органического вещества искусственно создать соответствующий температурный режим, то на его переход в растворимое состояние с образованием всех основных классов углеводородов достаточно часа. Подобные опыты сторонники органической гипотезы толкуют в свою пользу: преобразование органики в нефть налицо. В пользу биогенного происхождения нефти есть и другие аргументы. Так, большинство промышленных скоплений нефти связано с осадочными породами. Мало того — живая материя и нефть сходны по элементному и изотопному составу. В частности, в большинстве нефтяных месторождений обнаруживаются биомаркеры, такие как порфирины — пигменты хлорофилла, широко распространенные в живой природе. Еще более убедительным можно считать совпадение изотопного состава углерода биомаркеров и других углеводородов нефти.

Состав и свойства нефти

ХАРАКТЕРИСТИКИ НЕФТИ МОГУТ ЗНАЧИТЕЛЬНО РАЗЛИЧАТЬСЯ ДЛЯ РАЗНЫХ МЕСТОРОЖДЕНИЙ

Основные химические элементы, из которых состоит нефть: углерод — водород — и сера — до 7%. Последняя обычно присутствует в виде сероводорода или меркаптанов, которые могут вызывать коррозию оборудования. Также в нефтях присутствует до 1,7% азота и до 3,5% кислорода в виде разнообразных соединений. В очень небольших количествах в нефтях содержатся редкие металлы (например, V, Ni и др.).

От месторождения к месторождению характеристики и состав нефти могут различаться очень значительно. Ее плотность колеблется от 0,77 до 1,1 г/см³. Чаще всего встречаются нефти с плотностью кипения варьирует от 30 до 600°C в зависимости от химического состава. На этом свойстве основана разгонка нефтей на фракции. Вязкость сильно меняется в зависимости от температуры. Поверхностное натяжение может быть различным, но всегда меньше, чем у воды: это свойство используется для вытеснения нефти водой из пор пород-коллекторов.

Большинство ученых сегодня объясняют происхождение нефти биогенной теорией. Однако и неорганики приводят ряд аргументов в пользу своей точки зрения. Есть различные версии возможного неорганического происхождения нефти в недрах земли и других космических тел, но все они опираются на одни и те же факты. Во-первых, многие, хотя и не все месторождения связаны с зонами разломов. Через эти разломы, по мнению сторонников неорганической концепции, нефть и поднимается с больших глубин ближе к поверхности Земли. Во-вторых, месторождения бывают не только в осадочных, но также в магматических и метаморфических горных породах (впрочем, они могли оказаться там и в результате миграции). Кроме того, углеводороды встречаются в веществе, извергающемся из вулканов. Наконец, третий, наиболее весомый аргумент в пользу неорганической теории состоит в том, что углеводороды есть не только на Земле, но и в метеоритах, хвостах комет, в атмосфере других планет и в рассеянном космическом веществе. Так, присутствие метана отмечено на Юпитере, Сатурне, Уране и Нептуне. На Титане, спутнике Сатурна, обнаружены реки и озера, состоящие из смеси метана, этана, пропана, этилена и ацетилена. Если на других планетах Солнечной системы эти вещества могут образовываться без участия биологических объектов, почему это невозможно на Земле?

Этапы образования нефти

СТАДИИ ОБРАЗОВАНИЯ ОСАДОЧНЫХ ПОРОД И ПРЕОБРАЗОВАНИЯ НЕФТИ

В ловушке

Помимо чисто научного интереса гипотезы, объясняющие происхождение нефти и газа, имеют еще и политическое звучание. Действительно, раз уж нефть может получаться из неорганических веществ и темпы ее образования не десятки миллионов лет, как предполагает биогенная концепция, а во много тысяч раз выше, значит, проблема скорого исчерпания запасов становится как минимум не столь однозначной. Однако для нефтяников вопрос о том, откуда берется нефть, принципиален скорее с той точки зрения, может ли теория предсказать, где именно нужно искать месторождения. С этой задачей органики справляются лучше.

В сугубо прагматическом отношении для добычи важно знать даже не то, где нефть зародилась, а где она находится сейчас и откуда ее можно извлечь. Дело в том, что в земной коре большая часть нефти не остается в материнской породе, а перемещается и скапливается в особых геологических объектах, называемых ловушками. Даже если предположить, что нефть имеет неорганическое происхождение, ловушки для нее все равно за редким исключением находятся в осадочных бассейнах.

Под действием различных факторов углеводороды отжимаются из нефтематеринских пород в породы-коллекторы, способные вмещать флюиды (нефть, природный газ, воду). Таким образом, нефтяное месторождение — вовсе не подземное «озеро», заполненное жидкостью, а достаточно плотная структура. Коллекторы характеризуются пористостью (долей содержащихся в них пустот) и проницаемостью (способностью пропускать через себя флюид). Для эффективного извлечения нефти из коллектора важно благоприятное сочетание обоих этих параметров.

Типы коллекторов

БОЛЬШАЯ ЧАСТЬ ЗАПАСОВ НЕФТИ СОДЕРЖИТСЯ В ДВУХ ТИПАХ КОЛЛЕКТОРОВ

Терригенные (пески, песчаники, алевролиты, некоторые глинистые породы и др.) состоят из обломков горных пород и минералов. Этот тип коллекторов наиболее распространен: на них приходится 58% мировых запасов нефти и 77% газа. В качестве пустотного пространства, в котором накапливается нефть, в основном выступают поры — свободное пространство между зернами, из которых состоит коллектор.

Карбонатные (в основном известняки и доломиты) занимают второе место по распространенности (42% запасов нефти и 23% газа). Имеют сложную трещиноватую структуру. Нефть обычно содержится в кавернах, появившихся в результате выветривания и вымывания твердой породы, а также в трещинах. Наличие трещин влияет и на фильтрационные свойства коллектора, обеспечивая проводимость жидкости.

Вулканогенные и вулканогенно-осадочные (кислые эффузивы и интрузивы, пемзы, туфы, туфопесчаники и др.) коллекторы отличаются характером пустотного пространства — в основном это трещины, — резкой изменчивостью свойств в пределах месторождений.

Глинисто-кремнисто-битуминозные отличаются значительной изменчивостью состава, неодинаковой обогащенностью органическим веществом. Промышленная нефтеносность глинисто-кремнисто-битуминозных пород установлена в баженовской (Западная Сибирь) и пиленгской (Сахалин) свитах.

Двигаясь по коллектору, флюид в какой-то момент может упереться в непроницаемый для него экран — флюидоупор. Слои такой породы называют покрышками, а вместе с коллектором они формируют ловушки, удерживающие нефть и газ в месторождении. В классическом варианте в верхней части ловушки может присутствовать газ (он легче). Снизу залежь подстилается более плотной, чем нефть, водой.

Классификации ловушек чрезвычайно разнообразны (часть из них см. на рис.). Наиболее простая и с точки зрения геологоразведки, и для дальнейшей добычи — антиклинальная ловушка (сводовое поднятие), перекрытая сверху пластом флюидоупора. Такие ловушки образуются в результате изгибов пластов осадочного чехла. Однако помимо изгибов внутренние пласты претерпевают и множество других деформаций. В результате тектонических движений, например, пластколлектор может деформироваться и потерять свою однородность. В этом случае процессы геологоразведки и добычи оказываются намного сложнее. Еще одна неприятность, которая поджидает нефтяников со стороны ловушек, — замещение проницаемых пород, обладающих хорошими коллекторскими свойствами, например песчаников, непроницаемыми. Такие ловушки называются литологическими.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *