vr vcc temperature svid что это такое
Внешние сигналы процессоров Core i7.
Внешние сигналы процессоров Core i7.
Кристалл процессора Core i7 (Nehalem) с другими компонентами системы (северным мостом X58 и модулями памяти DDR3) связывают два внутренних архитектурных блока: интерфейсный блок QuickPath Interconnect (QPI), формирующий на выходе последовательный системный интерфейс для связи с чипсетом (и другими процессорами в многопроцессорных вариантах), и интегрированный в процессор трехканальный контроллер памяти Integrated Memory Controller (IMC), формирующий на выходе интерфейсы для связи с модулями памяти. Кроме того, процессор поддерживает достаточно большое число внешних служебных связей, необходимых выполнения функций управления, контроля, энергосбережения и т. п.
Ввиду того, что Core i7 относятся к новому поколению процессоров, использующему микроархитектуру Nehalem, следует напомнить об основных характерных особенностях его построения:
— врождённая четырёхъядерная архитектура строения, единый процессорный кристалл включает четыре ядра с 256-килобайтным L2 кэшем и общий разделяемый L3 кэш;
— замена процессорной шины Quad Pumped Bus новым последовательным интерфейсом QuickPath с топологией точка-точка, который может использоваться не только для соединения процессора и чипсета, но и для связи процессоров между собой;
— встроенный в процессор контроллер памяти, поддерживающий трёхканальную DDR3 SDRAM, при этом каждый канал способен работать с двумя небуферизованными модулями DIMM;
— поддержка технологии SMT (Simultaneous multithreading), аналогичную памятной технологии Hyper-Threading (благодаря ей каждое ядро Core i7 может исполнять два вычислительных потока одновременно, в результате чего процессор представляется в операционной системе восемью ядрами);
— разделяемый кэш третьего уровня общим объёмом 8 Мбайт;
— встроенный микроконтроллер PCU, независимо управляющий напряжением и частотой каждого из ядер, обладающий возможностями автоматического разгона отдельных ядер при сниженной нагрузке на другие ядра;
— поддержку нового набора инструкций SSE4.2;
— Core i7 производится по технологии с нормами производства 45 нм, состоит из 731 млн. транзисторов и имеет площадь ядра 263 кв.мм.
Микроархитектурные улучшения, сделанные в глубине ядра, не несут в себе революционных изменений в ядре, а в основном обуславливаются оптимизацией давно существующей микроархитектуры Core под работу с технологией SMT. Основные же новации, приходящие в настольные системы вместе с процессорами Core i7, касаются платформы в целом.
Процессоры Core i7 отличаются от своих предшественников поколения Core 2 не только с точки зрения внутреннего содержания, но и снаружи. Так, новые процессоры используют разъём LGA1366, существенно превосходящий по числу контактов и габаритам привычный LGA775. Появление в процессоре новых компонентов изменило и номенклатуру внешних контактов и сигналов (табл. 1)
Увеличение числа контактов обусловлено появлением в процессоре трёхканального контроллера памяти, в то время как ранее в интеловских системах он размещался в северном мосте набора логики.
Поскольку процессоры Core i7 используют совершенно новый интерфейс для связи с северным мостом, они нуждаются в специализированном чипсете (Intel X58 Express). Cеверный мост оборудован и контроллером интерфейса QPI, посредством которого он соединяется с процессором, а также снабжён поддержкой шины DMI, которая традиционно используется в интеловских чипсетах для связи между мостами.
Наименование
Описание
Дифференциальный сигнал синхронизации (на процессор)
Дифференциальный сигнал синхронизации (на ITP)
BPM# [7:0] ввод / вывод.
Указывает, что в системе обнаружена катастрофическая ошибка (исключение «machine check»), и она не может продолжать работу. Процессор определяет это как неисправимую ошибку машины и другие неисправимые ошибки. Поскольку это контакт входа/выхода (I/O), внешним агентам тоже разрешено выдавать эти сигналы, приводящие к обработке процессором особой ситуации при проверке машины.
Компенсация импеданса, должна быть терминирована на системной плате с использованием прецизионного постоянного резистора.
Входные тактирующие дифференциальные сигналы шины QPI, которые соответствуют принимаемым данным.
Входные тактирующие дифференциальные сигналы шины QPI, которые соответствуют передаваемым данным.
Должен быть терминирован на системной плате с использованием прецизионного (постоянного) резистора.
QPI_DRX_DN [19:0] и QPI_DRX_DP [19:0]
QPI_DTX_DN[19:0] и QPI_DTX_DP[19:0]
Должен быть терминирован на системной плате с использованием прецизионного (постоянного) резистора.
Опорное напряжение для DDR3
Определяют банк который предназначен для текущей команды Активации, Чтения, Записи, или команды Предвыборки.
DDR <0>_CAS# Строб адреса столбца.
Разрешение синхронизации банка или режим энергосбережения
Дифференциальные тактовые сигналы для модулей DIMM. Команды и сигналы управления действительны по нарастающему фронту импульсов.
Каждый сигнал выбирает один канал как цель команды и адреса.
DDR <0>_DQ [63:0] биты шины данных DDR3.
Мультиплексированная шина адреса. По этим линиям передается адрес строки при чтении или записи, и адрес столбца. Кроме того эти линии используется для установки параметров в регистрах конфигурации DRAM.
Обеспечивает различные комбинации сопротивления терминации в активных и неактивных модулях DIMM, когда данные прочитаны или записаны.
Строб адреса строки
Текущий смысл зависит от VRD11.1
Наименование
Описание
PECI (Platform Environment Control Interface –интерфейс управления средой платформы) – последовательный служебный интерфейс к процессору.
используется, прежде всего, для управления тепловым режимом, системой питания и для контроля ошибок. Подробнее об электрических спецификациях, протоколах и функциях PECI можно найти в документе Platform Environment Control Interface Specification.
процессорный выход, используемый средствами отладки.
используется средствами отладки, чтобы запросить операции отладки на процессоре.
SKTOCC# (Гнездо занято) сигнал активен если процессор установлен в сокете. У этого сигнала нет никакой связи с кристаллом процессора. Проектировщики системы могут использовать этот сигнал чтобы определить, присутствует ли процессор.
Для правильной работы процессора TESTLOW должен быть подключен к земле через резистор.
TMS (Test Mode Select – выбор режима тестирования) является специальным сигналом интерфейса JTAG, формируемым специальной отладочной аппаратурой для порта ТАР.
TRST# (Test Reset – сброс тестирования) сбрасывает логику порта TAP. TRST# должен быть переведен в низкий уровень при сбросе питания.
Питание для ядра процессора.
VCC_SENSE и VSS_SENSE обеспечивают изолированное, низкоимпедансное подключение ядра процессора к напряжению питания и земле. Они могут быть использованы для обнаружения или измерения напряжения на кристалле процессора.
VCCPLL – отдельное питание PLL.
Наименование
Описание
VID [7:0] (идентификатор напряжения) – эти выходные сигналы используются, чтобы поддержки автоматического выбора напряжения питания источника (VCC). Напряжение для формирования этих сигналов должно быть подано до момента включения VR источника Vcc процессора. И наоборот, выход VR должен быть заблокирован до поставки напряжения для сигналов VID. Сигналы VID необходимы для поддержки процессов изменения напряжения.VR должен обеспечивать напряжение или отключиться самостоятельно.
VID6 и VID7 должны быть связаны с Vss через резисторы 1 кОм
(эти значения защелкиваются по переднему фронту сигнала VTTPWRGOOD).
Напряжение питания для аналоговой части интегрированного контроллера памяти, QPI и общего кэша.
Напряжение питания для цифровой части интегрированного контроллера памяти, QPI и общего кэша.
VTT_VID [2:4] (идентификатор VTTVoltage) используются для поддержания автоматического выбора напряжений электропитания (VTT).
VTT_SENSE и VSS_SENSE_VTT обеспечивают изолированный, низкий импеданс связи с напряжением VTT и «землей» процессора. Они могут использовании для измерения
напряжения на кристалле.
Этот сигнал означает для процессора, что электропитание VTT является устойчивым и в пределах спецификаций. Сигнал имеет низкий уровень напряжения со времени включения электропитания, пока оно не достигло номинального значения указанного в спецификации тогда сигнал должен перейти к высокому уровню.
Входные и выходные сигналы процессоров семейства Core i7 имеют большое разнообразие рабочих уровней сигналов, протоколов обмена, схем согласования и «гашения» сигналов скоростных линий. В различных полупроводниковых цифровых микросхемах и процессорах широко используются логические вентили на TTL (ТТЛ) и CMOS (КМОП) структурах. Внутри сложных микросхем применяются и другие типы ячеек, но они обычно обрамляются внешними схемами с параметрами ТТL- или CMOS-вентилей. Логические элементы CMOS отличаются от ТТL большим размахом сигнала (низкий уровень ближе к нулю, высокий — к напряжению питания), малыми входными токами (почти нулевыми в статике, в динамике — обусловленными паразитной емкостью) и малым потреблением, однако их быстродействие несколько ниже. В отличие от ТТL, микросхемы CMOS допускают более широкий диапазон питающих напряжений. Микросхемы ТТL и CMOS взаимно стыкуются, хотя вход CMOS требует более высокого уровня логической единицы, а выход CMOS из-за невысокого выходного тока можно нагружать лишь одним ТТL-входом. Современные схемы CMOS по параметрам приближаются к ТТL и хорошо стыкуются с ними. Схемы CMOS имеют те же типы выводов, но вместо выхода с открытым коллектором у них присутствует выход с открытым стоком (что по логике работы одно и то же).
Независимые блоки рекалибровки синхронизации приемо-передатчиков, содержащие последовательные цепи обратной связи, постоянно отслеживают различные факторы девиации синхросигнала, «перестраивая» его, и поддерживают режим задержки «линковки» приемных (RX) и передающих (TX) каналов с интервалом, менее чем 5 нс.
Строго однонаправленное соединение по топологии типа «точка-точка», передающие множественные биты, применение действительно реальной дифференциальной логики, где используется два вывода для приемника и передатчика на один сигнал. Независимые источники передающих (CFM-аналог) и приемных (CTM-аналог) синхросигналов не обязательно должны генерировать строго одинаковые синхроимпульсы, однако они должны использовать как можно меньший временной «разброс». Терминирование, ставшее обязательным в современных ВЧ-линиях, в данном случае имеет внутреннюю программируемую реализацию посредством ранее упомянутого внешнего опорного резистора.
Gunning Transeiver Logic – это технология низковольтной высокочастотной системной шины, разработанная фирмой Intel еще для процессоров серии Pentium. Улучшенная версия GTL для процессоров Pentium II получила название GTL+. Дальнейшие усовершенствования привели к появлению спецификации AGTL+, предназначенной для процессоров Pentium III/4 и далее. Все варианты шины полностью совместимы между собой. Все проводники системной шины замкнуты c обоих концов на резисторы, играющие роль терминаторов. Логической единице на шине соответствует уровень 1,5 Вольта, низкий уровень выходного напряжения не должен превышать 0,6 Вольта. При обмене данными процессор генерирует сигнал Reference, составляющий примерно 2/3 от уровня логической единицы на шине, который инициирует передачу (прием) данных в соответствующие буфера. Такой же сигнал могут инициировать другие устройства подключенные к системной шине. При этом гарантируется одновременное поступление данных, независимо от длины проводников. Такое решение позволило значительно упростить топологию системной платы. Уменьшилось влияние конденсаторной емкости проводников, наведенной электромагнитной индукции. Стала возможной надежная работа шины на частотах от 150 МГц и значительно выше. Схемы передатчиков сигналов этого интерфейса имеют выходы типа «открытый коллектор», а входные цепи приемников являются дифференциальными, сигнал воспринимается относительно опорного уровня на входе VREF.
Переход на современные сигнальные протоколы сопряжен с большими проблемами технологического характера. Пониженное напряжение питания означает переход на другую норму производства кристаллов, необходима специализированная аппаратура для контроля над операциями, осциллографы для снятия тайминговых характеристик новых чипов и специальные имитаторы критических условий.
В табл. 2 сигналы процессора Core i7 сгруппированы по типом выполняемых функций, технологий и спецификаций. Буферный тип указывает технологии которая используется для передачи сигналов. Есть некоторые сигналы, которые не имеют ODT и должны быть терминированы на плате. Сигналы, которые имеют ODT, перечислены в табл. 3.
Vr vcc temperature svid что это такое
Intel® motherboards are equipped with temperature sensors. The sensors work with the fan controllers to regulate the temperature of various hardware components. The components that the sensors monitor include memory (RAM), processor (CPU), platform control hub (PCH), and voltage regulator (VR). The Temperatures tab in Visual BIOS provides a set of configuration options that define the behavior of each component sensor. Figure 2.28 depicts an example of what the temperature settings may look like.
Figure 2.28: Use this page to modify system temperature settings
Processor
The processor is the brain of the computer. Like a human body, the computer cannot function without the processor. It is important to keep the processor cool in order to ensure a long life. The processor’s sensor monitors the temperature of the system processor. This sensor can be controlled by a set of options. Figure 2.29 displays the options.
Figure 2.29: Use this section to modify processor temperature sensor settings
Ø Over-Temperature Threshold defines the temperature that will cause temperature monitoring software to generate an alert.
Ø Control Temperature defines the processor’s temperature that the fan control subsystem attempts to maintain.
Ø All-On Temperature defines the temperature at which the fan control subsystem will increase all fans that are associated with this temperature sensor to maximum speed.
Ø Responsiveness defines how quickly all fans that are associated with this temperature sensor react to changes in temperature.
Ø Damping helps reduce oscillation in fan speed response. Higher settings will generate fewer changes, but could slow the rate of temperature response.
The process control hub (PCH) works with the system processor to manage various I/O components in the system. The hardware components include both USB and SATA controllers. Traditionally, the PCH does not have a fan directly attached to its heat sink. Therefore, the sensor monitors the area around the PCH. This sensor can be controlled by a set of options (Figure 2.30).
Figure 2.30: Use this section to modify chipset temperature sensor settings
Ø Over-Temperature Threshold defines the temperature that will cause temperature monitoring software to generate an alert.
Ø Control Temperature defines the PCH area temperature that the fan control subsystem attempts to maintain.
Ø All-On Temperature defines the temperature at which the fan control subsystem will increase all fans that are associated with this temperature sensor to maximum speed.
Ø Responsiveness defines how quickly all fans that are associated with this temperature sensor react to changes in temperature.
Ø Damping helps reduce oscillation in fan speed response. Higher settings will generate fewer changes, but could slow the rate of temperature response.
Memory
Random Access Memory (RAM) is second to the processor in the list of most important hardware components in a computer. RAM acts as a sort of “scratchpad” that all software, including the onboard BIOS, require in order to function. For example, when a file is opened in a document editor, its contents are loaded into RAM. Likewise, when an application is started, its executable instructions are also loaded into RAM. A temperature sensor is located near the memory slots on the motherboard that monitor the temperature of the surrounding components. This sensor can be controlled by a set of options (Figure 2.31).
Figure 2.31: Use this section to modify memory temperature sensor settings
Ø Over-Temperature Threshold defines the temperature that will cause temperature monitoring software to generate an alert.
Ø Control Temperature defines the memory area temperature that the fan control subsystem attempts to maintain.
Ø All-On Temperature defines the temperature at which the fan control subsystem will increase all fans that are associated with this temperature sensor to maximum speed.
Ø Responsiveness defines how quickly all fans that are associated with this temperature sensor react to changes in temperature.
Ø Damping helps reduce oscillation in fan speed response. Higher settings will generate fewer changes, but could slow the rate of temperature response.
The voltage regulator (VR) is responsible for regulating the power lanes that feed power to the different hardware components on the motherboard. The temperature sensor is located in the VR area that monitors the temperature of the surrounding components. This sensor can be controlled by a set of options (Figure 2.32).