unicode что это такое
Символы Unicode: о чём должен знать каждый разработчик
Если вы пишете международное приложение, использующее несколько языков, то вам нужно кое-что знать о кодировке. Она отвечает за то, как текст отображается на экране. Я вкратце расскажу об истории кодировки и о её стандартизации, а затем мы поговорим о её использовании. Затронем немного и теорию информатики.
Введение в кодировку
Компьютеры понимают лишь двоичные числа — нули и единицы, это их язык. Больше ничего. Одно число называется байтом, каждый байт состоит из восьми битов. То есть восемь нулей и единиц составляют один байт. Внутри компьютеров всё сводится к двоичности — языки программирования, движений мыши, нажатия клавиш и все слова на экране. Но если статья, которую вы читаете, раньше была набором нулей и единиц, то как двоичные числа превратились в текст? Давайте разберёмся.
Краткая история кодировки
На заре своего развития интернет был исключительно англоязычным. Его авторам и пользователям не нужно было заботиться о символах других языков, и все нужды полностью покрывала кодировка American Standard Code for Information Interchange (ASCII).
ASCII — это таблица сопоставления бинарных обозначений знакам алфавита. Когда компьютер получает такую запись:
то с помощью ASCII он преобразует её во фразу «Hello world».
Один байт (восемь бит) был достаточно велик, чтобы вместить в себя любую англоязычную букву, как и управляющие символы, часть из которых использовалась телепринтерами, так что в те годы они были полезны (сегодня уже не особо). К управляющим символам относился, например 7 (0111 в двоичном представлении), который заставлял компьютер издавать сигнал; 8 (1000 в двоичном представлении) — выводил последний напечатанный символ; или 12 (1100 в двоичном представлении) — стирал весь написанный на видеотерминале текст.
В те времена компьютеры считали 8 бит за один байт (так было не всегда), так что проблем не возникало. Мы могли хранить все управляющие символы, все числа и англоязычные буквы, и даже ещё оставалось место, поскольку один байт может кодировать 255 символов, а для ASCII нужно только 127. То есть неиспользованными оставалось ещё 128 позиций в кодировке.
Вот как выглядит таблица ASCII. Двоичными числами кодируются все строчные и прописные буквы от A до Z и числа от 0 до 9. Первые 32 позиции отведены для непечатаемых управляющих символов.
Проблемы с ASCII
Позиции со 128 по 255 были пустыми. Общественность задумалась, чем их заполнить. Но у всех были разные идеи. Американский национальный институт стандартов (American National Standards Institute, ANSI) формулирует стандарты для разных отраслей. Там утвердили позиции ASCII с 0 по 127. Их никто не оспаривал. Проблема была с остальными позициями.
Вот чем были заполнены позиции 128-255 в первых компьютерах IBM:
Какие-то загогулины, фоновые иконки, математические операторы и символы с диакретическим знаком вроде é. Но разработчики других компьютерных архитектур не поддержали инициативу. Всем хотелось внедрить свою собственную кодировку во второй половине ASCII.
Все эти различные концовки назвали кодовыми страницами.
Что такое кодовые страницы ASCII?
Здесь собрана коллекция из более чем 465 разных кодовых страниц! Существовали разные страницы даже в рамках какого-то одного языка, например, для греческого и китайского. Как можно было стандартизировать этот бардак? Или хотя бы заставить его работать между разными языками? Или между разными кодовыми страницами для одного языка? В языках, отличающихся от английского? У китайцев больше 100 000 иероглифов. ASCII даже не может всех их вместить, даже если бы решили отдать все пустые позиции под китайские символы.
Эта проблема даже получила название Mojibake (бнопня, кракозябры). Так говорят про искажённый текст, который получается при использовании некорректной кодировки. В переводе с японского mojibake означает «преобразование символов».
Пример бнопни (кракозябров).
Безумие какое-то.
Именно! Не было ни единого шанса надёжно преобразовывать данные. Интернет — это лишь монструозное соединение компьютеров по всему миру. Представьте, что все страны решили использовать собственные стандарты. Например, греческие компьютеры принимают только греческий язык, а английские отправляют только английский. Это как кричать в пустой пещере, тебя никто не услышит.
ASCII уже не удовлетворял жизненным требованиям. Для всемирного интернета нужно было создать что-то другое, либо пришлось бы иметь дело с сотнями кодовых страниц.
��� Если только ������ вы не хотели ��� бы ��� читать подобные параграфы. �֎֏0590��׀ׁׂ׃ׅׄ׆ׇ
Так появился Unicode
Unicode расшифровывают как Universal Coded Character Set (UCS), и у него есть официальное обозначение ISO/IEC 10646. Но обычно все используют название Unicode.
Этот стандарт помог решить проблемы, возникавшие из-за кодировки и кодовых страниц. Он содержит множество кодовых пунктов (кодовых точек), присвоенных символам из языков и культур со всего мира. То есть Unicode — это набор символов. С его помощью можно сопоставить некую абстракцию с буквой, на которую мы хотим ссылаться. И так сделано для каждого символа, даже египетских иероглифов.
Кто-то проделал огромную работу, сопоставляя каждый символ во всех языках с уникальными кодами. Вот как это выглядит:
Префикс U+ говорит о том, что это стандарт Unicode, а число — это результат преобразования двоичных чисел. Стандарт использует шестнадцатеричную нотацию, которая является упрощённым представлением двоичных чисел. Здесь вы можете ввести в поле что угодно и посмотреть, как это будет преобразовано в Unicode. А здесь можно полюбоваться на все 143 859 кодовых пунктов.
Уточню на всякий случай: речь идёт о большом словаре кодовых пунктов, присвоенных всевозможным символам. Это очень большой набор символов, не более того.
Осталось добавить последний ингредиент.
Unicode Transform Protocol (UTF)
UTF — протокол кодирования кодовых пунктов в Unicode. Он прописан в стандарте и позволяет кодировать любой кодовый пункт. Однако существуют разные типы UTF. Они различаются количеством байтов, используемых для кодировки одного пункта. В UTF-8 используется один байт на пункт, в UTF-16 — два байта, в UTF-32 — четыре байта.
Но если у нас есть три разные кодировки, то как узнать, какая из них применяется в конкретном файле? Для этого используют маркер последовательности байтов (Byte Order Mark, BOM), который ещё называют сигнатурой кодировки (Encoding Signature). BOM — это двухбайтный маркер в начале файл, который говорит о том, какая именно кодировка тут применена.
В интернете чаще всего используют UTF-8, она также прописана как предпочтительная в стандарте HTML5, так что уделю ей больше всего внимания.
Этот график построен в 2012-м, UTF-8 становилась доминирующей кодировкой. И всё ещё ею является.
Что такое UTF-8 и как она работает?
UTF-8 кодирует с помощью одного байта каждый кодовый пункт Unicode с 0 по 127 (как в ASCII). То есть если вы писали программу с использованием ASCII, а ваши пользователи применяют UTF-8, они не заметят ничего необычного. Всё будет работать как задумано. Обратите внимание, как это важно. Нам нужно было сохранить обратную совместимость с ASCII в ходе массового внедрения UTF-8. И эта кодировка ничего не ломает.
Как следует из названия, кодовый пункт состоит из 8 битов (один байт). В Unicode есть символы, которые занимают несколько байтов (вплоть до 6). Это называют переменной длиной. В разных языках удельное количество байтов разное. В английском — 1, европейские языки (с латинским алфавитом), иврит и арабский представлены с помощью двух байтов на кодовый пункт. Для китайского, японского, корейского и других азиатских языков используют по три байта.
Если нужно, чтобы символ занимал больше одного байта, то применяется битовая комбинация, обозначающая переход — он говорит о том, что символ продолжается в нескольких следующих байтах.
И теперь мы, как по волшебству, пришли к соглашению, как закодировать шумерскую клинопись (Хабр её не отображает), а также значки emoji!
Подытожив сказанное: сначала читаем BOM, чтобы определить версию кодировки, затем преобразуем файл в кодовые пункты Unicode, а потом выводим на экран символы из набора Unicode.
Напоследок про UTF
Коды являются ключами. Если я отправлю ошибочную кодировку, вы не сможете ничего прочесть. Не забывайте об этом при отправке и получении данных. В наших повседневных инструментах это часто абстрагировано, но нам, программистам, важно понимать, что происходит под капотом.
Если HTML-документ не содержит упоминания кодировки, спецификация HTML5 предлагает такое интересное решение, как BOM-сниффинг. С его помощью мы по маркеру порядка байтов (BOM) можем определить используемую кодировку.
Это всё?
Unicode ещё не завершён. Как и в случае с любым стандартом, мы что-то добавляем, убираем, предлагаем новое. Никакие спецификации нельзя назвать «завершёнными». Обычно в год бывает 1-2 релиза, найти их описание можно здесь.
Если вы дочитали до конца, то вы молодцы. Предлагаю сделать домашнюю работу. Посмотрите, как могут ломаться сайты при использовании неправильной кодировки. Я воспользовался этим расширением для Google Chrome, поменял кодировку и попытался открывать разные страницы. Информация была совершенно нечитаемой. Попробуйте сами, как выглядит бнопня. Это поможет понять, насколько важна кодировка.
Заключение
При написании этой статьи я узнал о Майкле Эверсоне. С 1993 года он предложил больше 200 изменений в Unicode, добавил в стандарт тысячи символов. По состоянию на 2003 год он считался самым продуктивным участником. Он один очень сильно повлиял на облик Unicode. Майкл — один из тех, кто сделал интернет таким, каким мы его сегодня знаем. Очень впечатляет.
Надеюсь, мне удалось показать вам, для чего нужны кодировки, какие проблемы они решают, и что происходит при их сбоях.
Unicode: как человечество пришло к международному стандарту кодирования символов
Уверена, что большинство читателей хоть немного знакомы с терминами «Unicode» и «UTF-8». Но все ли знают, что именно стоит за ними? По сути они относятся к стандартам кодирования символов, также известным как наборы символов. Концепция появилась во времена оптического телеграфа, а не в компьютерную эру, как можно было подумать. Еще в 18 веке существовала потребность в быстрой передаче информации на большие расстояния, для чего использовались так называемые телеграфные коды. Информация кодировалась с помощью оптических, электронных и других средств.
В течение сотен лет, прошедших с момента изобретения первого телеграфного кода, не было никаких реальных попыток международной стандартизации таких схем кодирования. Даже первые десятилетия эры телетайпов и домашних компьютеров мало что изменили. Несмотря на то, что EBCDIC (8-битная кодировка символов IBM, продемонстрированная на перфокарте в заглавной иллюстрации) и ASCII немного улучшили ситуацию, способа кодировать растущую коллекцию символов без значительных затрат памяти все еще не было.
Развитие Юникода началось в конце 1980-х годов, когда рост обмена цифровой информацией во всем мире сделал потребность в единой системе кодирования более насущной. В наши дни Юникод позволяет нам использовать единую схему кодирования для всего — от базового английского текста и традиционного китайского, вьетнамского, даже майянского языков до пиктограмм, которые мы привыкли называть «эмодзи».
От кода к графикам
Еще в эпоху Римской империи было хорошо известно, что быстрая передача информации имеет значение. В течение долгого времени это означало наличие гонцов на лошадях, которые доставляли сообщения на большие расстояния, или их эквивалента. Как улучшить систему доставки информации, придумали еще в 4 веке до нашей эры — так появились водяной телеграф и система сигнальных огней. Но действительно эффективной передача данные на большие расстояния стала лишь в 18 веке.
Об оптическом телеграфе, также называемом «семафоре», мы уже писали в статье об истории оптической связи. Он состоял из ряда ретрансляционных станций, каждая из которых была оборудована системой поворотных стрелок, используемой для отображения символов телеграфного кода. Система братьев Шапп, которая использовалась французскими войсками между 1795 и 1850-ми годами, была основана на деревянной перекладине с двумя подвижными концами (рычагами), каждый из которых мог перемещаться в одно из семи положений. Вместе с четырьмя позициями для перекладины семафор в теории мог обозначить 196 символов (4x7x7). На практике число сокращалось до 92-94 позиций.
Французский оптический телеграфный код братьев Шапп, 1809 год
Система семафоров использовалась не столько для прямого кодирования символов, сколько для обозначения определенных строк в кодовой книге. Метод подразумевал, что по нескольким кодовым сигналам можно было расшифровать все сообщение. Это ускоряло передачу и делало бессмысленным перехват сообщений.
Улучшение производительности
Затем оптический телеграф был заменен электрическим. Это означало, что времена, когда кодировки фиксировались людьми, наблюдающими за ближайшей релейной вышкой, прошли. С двумя телеграфными устройствами, соединенными металлическим проводом, инструментом для передачи информации стал электрический ток. Это изменение привело к появлению новых кодов электрического телеграфа, а код Морзе в итоге стал международным стандартом (за исключением США, которые продолжали использовать американский код Морзе за пределами радиотелеграфии) с момента его изобретения в Германии в 1848 году.
Международный код Морзе имеет преимущество перед американским аналогом: в нем используется больше тире, чем точек. Такой подход снижает скорость передачи, но улучшает прием сообщения на другом конце линии. Это было необходимо, когда длинные сообщения передавались по многокилометровым проводам операторами разного уровня подготовки.
По мере развития технологий ручной телеграф был заменен на Западе автоматическим. В нем использовался 5-битный код Бодо, а также производный от него код Мюррея (последний основывался на использовании бумажной ленты, в которой пробивались отверстия). Система Мюррея позволяла заранее подготовить ленту с сообщениями, а затем загрузить ее в устройство для чтения, чтобы сообщение передалось автоматически. Код Бодо лег в основу международного телеграфного алфавита версии 1 (ITA 1), а модифицированный код Бодо-Мюррея лег в основу ITA 2, которая использовалась вплоть до 1960-х годов.
К 1960-м годам ограничение в 5 бит на символ уже не требовалось, что привело к развитию 7-битного ASCII в США и таких стандартов, как JIS X 0201 (для японских символов катакана) в Азии. В сочетании с телетайпами, которые тогда широко использовались, это позволяло передавать довольно сложные сообщения, включающие символы верхнего и нижнего регистров.
Полный набор символов 7-битного ASCII
В течение 1970-х и начала 1980-х годов ограничений 7- и 8-битных кодировок, таких как расширенный ASCII (например, ISO 8859-1 или Latin 1), было достаточно для основных домашних компьютеров и офисных нужд. Несмотря на это, потребность в улучшении была очевидна, поскольку общие задачи, такие как обмен цифровыми документами и текстом, часто приводили к хаосу из-за множества кодировок ISO 8859. Первый шаг был сделан в 1991 году — появился 16-битный Unicode 1.0.
Развитие 16-битных кодировок
Удивительно, что всего в 16 битах Unicode удалось охватить не только все западные системы письма, но и многие китайские иероглифы и множество специальных символов, используемых, например, в математике. С 16 битами, допускающими до 65 536 кодовых точек, Unicode 1.0 легко вмещал 7 129 символов. Но к моменту появления Unicode 3.1 в 2001 году он содержал не менее 94 140 символов.
Сейчас, в своей 13 версии, Unicode содержит в общей сложности 143 859 символов, не считая управляющих. Изначально Unicode предполагалось использовать только для кодирования систем записи, которые применяются в настоящее время. Но к релизу Unicode 2.0 в 1996 году стало понятно, что эту цель следует переосмыслить, чтобы кодировать даже редкие и исторические символы. Чтобы достичь этого без обязательной 32-битной кодировки каждого символа, Unicode изменился: он позволил не только кодировать символы напрямую, но и использовать их компоненты, или графемы.
Концепция в чем-то похожа на векторные изображения, где не указывается каждый пиксель, а вместо этого описываются элементы, составляющие рисунок. В результате кодировка Unicode Transformation Format 8 (UTF-8) поддерживает 2 31 кодовую точку, при этом для большинства символов в текущем наборе символов Unicode обычно требуется один-два байта.
Unicode на любой вкус и цвет
На данный момент довольно много людей, вероятно, сбиты с толку из-за различных терминов, которые используются, когда дело доходит до Unicode. Поэтому здесь важно отметить, что Unicode относится к стандарту, а различные Unicode Transformation Format являются его реализациями. UCS-2 и USC-4 — это более старые 2- и 4-байтовые реализации Unicode, при этом UCS-4 идентичен UTF-32, а UCS-2 заменяем UTF-16.
Обзор базовой многоязычной плоскости Unicode, первой плоскости Unicode практически со всеми современными языками
UTF-32, как следует из названия, кодирует каждый символ в четырех байтах. Это немного расточительно, зато абсолютно предсказуемо. Тот же UTF-8 символ может кодировать символ в диапазоне от одного до четырех байтов. В случае с UTF-32 определение количества символов в строке — это простая арифметика: взять все количество байтов и поделить на четыре. Это привело к появлению компиляторов и некоторых языков, например Python, позволяющих использовать UTF-32 для представления строк Unicode.
Однако из всех форматов Unicode наиболее популярным на сегодняшний день является UTF-8. Этому во многом способствовала всемирная сеть Интернет, где большинство веб-сайтов обслуживают свои HTML-документы в кодировке UTF-8. Из-за компоновки различных плоскостей кодовых точек в UTF-8, Western и многие другие распространенные системы записи умещаются в пределах двух байтов. Если сравнивать со старыми кодировками ISO 8859 и Shift JIS, фактически тот же текст в UTF-8 не занимает больше места, чем раньше.
От оптических башен до интернета
Времена конных гонцов, ретрансляционных вышек и небольших телеграфных станций прошли. Коммуникационные технологии сильно развились. Даже те дни, когда телетайпы были обычным явлением в офисах, вспоминаются с трудом. Однако на каждом этапе развития истории человечеству было необходимость кодировать, хранить и передавать информацию. И это привело нас к тому, что теперь мы можем мгновенно передавать сообщение по всему миру в системе символов, которую можно декодировать независимо от того, где вы находитесь.
Для тех, кому довелось переключаться между кодировками ISO 8859 в почтовых клиентах и веб-браузерах, чтобы получить что-то, похожее на исходное текстовое сообщение, поддержка Unicode стала благословением. Я могу понять этих людей. Когда 7-битный ASCII (или EBCDIC) был безальтернативной технологией, иногда приходилось тратить часы, разбираясь в символьной путанице цифрового документа, полученного из европейского или американского офиса.
Даже если Unicode не лишен проблем, трудно не испытывать благодарности, сравнивая его с тем, что было раньше. Вот они, 30 лет существования Unicode.
Что такое Юникод?
Юникод (Unicode), это многоязычный, основанный на ASCII стандарт кодирования символов, а также, связанное с ним, семейство многобайтных кодировок. Если некоторые слова из предыдущего предложения вам не понятны, давайте рассмотрим их подробнее.
Что такое кодировка
Современные компьютеры всё ещё достаточно глупые и, в большинстве своём, не умеют работать ни с чем, кроме чисел. Мы рассматриваем на своих мониторах фотографии, смотрим фильмы, играем в игры. Но для компьютеров всё это лишь безликий поток нулей и единичек. Так же и текст — для компьютера это просто набор байтов. Буквы и любые другие символы представляются в машинной памяти, как числа.
Поэтому программистам при работе с текстом приходится делать подобные соглашения: «А давайте каждому символу будет соответствовать один байт. Причём, если в байте будет число 43, то будем считать, что это цифра ноль. А если число 66, то пусть это будет заглавная латинская буква B».
Подобный список всех используемых символов и соответствующих им чисел и называется кодировкой. Вы, скорее всего, уже слышали названия многих кодировок: Windows-1251, KOI-8, ну и, конечно, Unicode.
Крякозябры
Наверное, часто бывала ситуация, когда вы открываете страницу в браузере, а там вместо текста какая-то мешанина из чудных символов. Или просто сплошные вопросительные знаки. Или вы пишете любовное письмо своей девушке, а она звонит вам и говорит «что за нечитаемый бред ты мне прислал? Я обиделась».
Это всё из-за того, что в мире наплодилось слишком много разных кодировок. И текст в одной из них выглядит совершенно не так, как в другой. Дело в том, что компьютер не знает какую кодировку вы используете для текста. Для него это просто последовательность каких-то чисел.
Например, ваш текстовый редактор настроен на кодировку Windows-1251. И вы пишете «Здравствуйте, дорогая Маша!». Вы нажимаете первую букву и программа думает: «ага, русская заглавная буква Зэ — код 199». И записывает число 199 в файл. Маша получает ваше письмо, но в её почтовом клиенте стоит кодировка KOI8-R (потому что Маша любит старый Unix). А в этой кодировке числу 199 соответствует строчная буква «г». И Маша читает: «гДПЮБЯРБСИРЕ, ДНПНЦЮЪ лЮЬЮ!». Маша обиделась!
Чтобы подобного не происходило, нужно каким-то образом указывать кодировку в которой набран текст. Например, в HTML это делается с помощью тега:
ASCII
В определённый момент времени распространение получила кодировка ASCII (American Standard Code for Information Interchange). В ней определены 128 символов с кодами от 0 до 127. Сюда включён латинский алфавит, цифры и основные знаки препинания (
Практически все современные кодировки, использующиеся на персональных компьютерах являются ASCII-совместимыми. То есть первые 128 символов у них кодируются одинаково, а различия начинаются с кода 128 и выше. Вышеупомянутые Windows-1251 и KOI8-r также основаны на ASCII и если бы письмо начиналось бы с «Hello, my dear Maria!», то недопонимания не возникло бы.
Основан на ASCII и Юникод.
Однобайтные кодировки
Одна из причин, по которой появилось такое большое количество кодировок, это то, что вначале каждая компания придумывала свои стандарты, не обращая внимания на другие. Вторая причина заключается в том, что старые кодировки были однобайтными. То есть каждому символу в тексте соответствует один байт в памяти компьютера.
Однобайтные кодировки всем хороши: они компактны, с ними легко работать (нужно достать пятый символ — просто берём пятый байт от начала). Единственная проблема: в них помещается мало символов. Ровно столько, сколько значений может принимать один байт, то есть обычно, это 256. Например, в Windows-1251 мы отдали 128 символов под ASCII, добавили 66 букв русского алфавита (строчные и заглавные), несколько знаков препинания и вот у нас уже остаётся не так много свободных позиций. Даже на псевдографику не хватает.
То есть свести в одну кодировку все возможные символы даже европейских алфавитов достаточно сложно. А уж для китайцев с их тысячами иероглифов вообще всё тоскливо. А о всяких смайликах, эмоджи и иконках самолётиков и думать нечего. Поэтому для кириллицы приходилось изобретать свою кодировку, а для греческого языка другую.
Впрочем, такая ситуация сохранялась достаточно долго. Потому что проблемы англоязычных пользователей и программистов решила ASCII, а до китайских проблем им не было дела. С ростом же глобального интернета вдруг оказалось, что в мире говорят не только на английском языке, поэтому с кодировками нужно что-то менять.
Многобайтные кодировки
Самым простым решением было взять два байта вместо одного. Плюс такого решения: теперь можно в рамках одной кодировки использовать 65 тысяч символов. Минусы тоже есть:
Стандарт Unicode
В конечном итоге всё вылилось в стандарт Юникода, который худо-бедно, но решает практически все стоявшие перед кодировками проблемы.
С одной стороны, Юникод позволяет кодировать практически неограниченное количество символов. В последнем стандарте определено более 100 000 различных символов всех современных и многих уже мёртвых языков, а также различные иконки и пиктограммы. С другой стороны, некоторые способы кодирования позволяют Юникоду оставаться ASCII-совместимыми. Что позволяет работать, как и раньше многим программам, а также американским и другим англоязычным пользователям, многие из которых появления Юникода даже не заметили. В Юникоде также собраны все символы из всех популярных стандартов кодирования, что позволяет преобразовать в него любой текст из старой кодировки.
Практически все современные программы, работающие с текстом, понимают Юникод. Более того, обычно они в нём и работают. Например, даже когда вы открываете сайт в старой доброй Windows-1251, браузер сначала внутри у себя перекодирует все тексты в Юникод, а потом отображает их. В общем, Юникод, это светлое будущее интернета и всей компьютерной индустрии.
Отличие набора символов от кодировки
Термины «кодировка», «стандарт кодирования», «набор символов» обычно используются, как синонимы, но между ними есть и тонкие различия. Важно понимать разницу между «стандартом» и, собственно, «кодировкой». Некий стандарт просто говорит, что буква «A», это число 65, а буква «B» — 66. Кодировка же отвечает за то, как эти числа представить в памяти компьютера.
То есть в стандарте Юникода определено, что кириллической букве «А» соответствует абстрактное число 1040. Как представить это число в виде последовательности байтов решает уже конкретная кодировка — UTF-8, UTF-16, UTF-32.
То есть текстовый файл не может быть в кодировке «Юникод», а только в конкретной кодировке «UTF-8» или «UTF-16».
Кодировки и шрифты
Юникод, как и любая другая кодировка не описывает того, как следует отрисовывать символы. Для него число 1040, это «кириллическая заглавная буква А». А какая она, печатная, прописная, наклонная, жирная или с завитушками, это не его дело.
За изображение символа отвечают шрифты. Поэтому один и тот же символ в разных шрифтах может выглядеть по разному, а то и вообще отсутствовать.
© Таблица символов Юникода, 2012–2021.
Юникод® — это зарегистрированная торговая марка консорциума Юникод в США и других странах. Этот сайт никак не связан с консорциумом Юникод. Официальный сайт Юникода располагается по адресу www.unicode.org.
Мы используем 🍪cookie, чтобы сделать сайт максимально удобным для вас. Подробнее